An accurate Fourier splitting scheme for solving the cubic quintic complex Ginzburg-Landau equation

被引:1
|
作者
Mohammedi, Tidjani [1 ]
Aissat, Abdelkader [1 ]
机构
[1] Univ Blida 1, Fac Technol, LATSI Lab, Blida 09000, Algeria
关键词
Cubic guintic complex Ginzburg-Landau; Dissipative soliton; Mode-locked laser; Split-Step Fourier method; LASER MODE-LOCKING; DISSIPATIVE SOLITONS; OPTIMIZATION;
D O I
10.1016/j.spmi.2014.08.007
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, we present a splitting scheme for the pseudo-spectral numerical method namely the Split-Step Fourier method (SSFM), in our approach we expand the exponential term in a manner that a succession of linear and nonlinear terms are distributed uniformly along one step size, the splitting will be performed symmetrically, this new scheme will be tested on one of the most used nonlinear partial deferential equation in optics, namely the cubic quintic complex Ginzburg-Landau (CQCGL) equation, in this work we demonstrate that the accuracy of the Split Step Fourier method scheme can be improved by expanding and distributing it in small parts within one step. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:424 / 434
页数:11
相关论文
共 50 条
  • [1] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [2] Traveling wavetrains in the complex cubic-quintic Ginzburg-Landau equation
    Mancas, SC
    Choudhury, SR
    CHAOS SOLITONS & FRACTALS, 2006, 28 (03) : 834 - 843
  • [3] Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    PHYSICS LETTERS A, 2005, 347 (4-6) : 231 - 240
  • [4] Bifurcation to traveling waves in the cubic-quintic complex Ginzburg-Landau equation
    Park, Jungho
    Strzelecki, Philip
    ANALYSIS AND APPLICATIONS, 2015, 13 (04) : 395 - 411
  • [5] Solving generalized quintic complex Ginzburg-Landau equation by homotopy analysis method
    Naghshband, Soheila
    Araghi, Mohammad Ali Fariborzi
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 607 - 613
  • [6] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796
  • [7] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [8] Meromorphic Traveling Wave Solutions of the Complex Cubic-Quintic Ginzburg-Landau Equation
    Conte, Robert
    Ng, Tuen-Wai
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 153 - 166
  • [9] Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation
    Gutierrez, Pablo
    Escaff, Daniel
    Descalzi, Orazio
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1901): : 3227 - 3238
  • [10] Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation
    Akhmediev, NN
    Afanasjev, VV
    SotoCrespo, JM
    PHYSICAL REVIEW E, 1996, 53 (01) : 1190 - 1201