Inverse ductile-brittle transition in metallic glasses?

被引:10
|
作者
Sun, Y. H. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
关键词
Metallic glasses; Mechanical properties; Shear bands; Plasticity; TEMPERATURE MECHANICAL-PROPERTIES; SHEAR-BAND FORMATION; STRAIN-RATE; COMPRESSIVE BEHAVIOR; FREE-VOLUME; AMORPHOUS WIRES; INHOMOGENEOUS FLOW; TENSILE-STRENGTH; HOMOGENEOUS FLOW; SPINNING METHOD;
D O I
10.1179/1743284714Y.0000000684
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is evidence that metallic glasses can show increased plasticity as the temperature is lowered. This behaviour is the opposite to what would be expected from phenomena such as the ductile-brittle transition in conventional alloys. Data collected for the plasticity of different metallic-glass compositions tested at room temperature and below, and at strain rates from rate 10(-5) to 10(-3) s(-1), are reviewed. The analogous effects of low temperature and high strain rate, as observed in conventional alloys, are examined for metallic glasses. The relevant plastic flow in metallic glasses is inhomogeneous, sharply localised in thin shear bands. The enhanced plasticity at lower temperature is attributed principally to a transition from shear on a single dominant band to shear on multiple bands. The origins of this transition and its links to shear bands operating ` hot' or ` cold' are explored. The stress drop on a shear band after initial yielding is found to be a useful parameter for analysing mechanical behaviour. Schematic failure mode maps are proposed for metallic glasses under compression and tension. Outstanding issues are identified, and design rules are considered for metallic glasses of improved plasticity.
引用
收藏
页码:635 / 650
页数:16
相关论文
共 50 条
  • [1] DUCTILE-BRITTLE TRANSITION IN METALLIC GLASSES
    CHEN, HS
    MATERIALS SCIENCE AND ENGINEERING, 1976, 26 (01): : 79 - 82
  • [2] Dilatancy induced ductile-brittle transition of shear band in metallic glasses
    Zeng, F.
    Jiang, M. Q.
    Dai, L. H.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2212):
  • [3] Magnetic properties of the 3d-based metallic glasses at ductile-brittle transition
    Taras Shevchenko Univ, Kiev, Ukraine
    Journal De Physique. IV : JP, 1998, 8 (02): : 99 - 102
  • [4] Shear transformation zone volume determining ductile-brittle transition of bulk metallic glasses
    Jiang, F.
    Jiang, M. Q.
    Wang, H. F.
    Zhao, Y. L.
    He, L.
    Sun, J.
    ACTA MATERIALIA, 2011, 59 (05) : 2057 - 2068
  • [5] Magnetic properties of the 3d-based metallic glasses at ductile-brittle transition
    Zakharenko, M
    Babich, M
    Yurgelevych, I
    Zaichenko, S
    Perov, N
    JOURNAL DE PHYSIQUE IV, 1998, 8 (P2): : 99 - 102
  • [6] DUCTILE-BRITTLE TRANSITION OF ACRYLIC
    KUSY, RP
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1977, 24 (01) : 141 - 144
  • [7] Modeling of ductile fracture and the ductile-brittle transition
    Needleman, A
    ADVANCES IN MECHANICAL BEHAVIOUR, PLASTICITY AND DAMAGE, VOLS 1 AND 2, PROCEEDINGS, 2000, : 53 - 61
  • [8] Ductile-to-brittle transition criterion of metallic glasses
    Li, X. T.
    Liu, Z. Q.
    Zhang, Z. J.
    Zhang, P.
    Zhang, Z. F.
    PHYSICAL REVIEW MATERIALS, 2024, 8 (09):
  • [9] Ductile-to-brittle transition in spallation of metallic glasses
    Huang, X.
    Ling, Z.
    Dai, L. H.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (14)
  • [10] ON DETERMINING DUCTILE-BRITTLE TRANSITION TEMPERATURE
    ARMSTRONG, RW
    PHILOSOPHICAL MAGAZINE, 1964, 9 (102): : 1063 - &