Sturm-Liouville wavelets

被引:7
|
作者
Depczynski, U [1 ]
机构
[1] Univ Hohenheim, Inst Angew Math & Stat, D-70593 Stuttgart, Germany
关键词
D O I
10.1006/acha.1997.0231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe a new construction of wavelet-like functions on a compact interval [a, b] subset of R. Our approach of localizing multiscale decomposition of weighted L-2-spaces L2,(rho)([a, b]) is based on eigenfunctions of regular Sturm-Liouville boundary value problems, and was introduced and analyzed in Depczynski (1995). The asymptotic properties of such eigenfunctions yield localizing and stable bases, which prove to be very useful in time-frequency analysis. For specific types of eigenfunctions, fast algorithms are presented. (C) 1998 Academic Press.
引用
收藏
页码:216 / 247
页数:32
相关论文
共 50 条
  • [1] COMPUTING EIGENELEMENTS OF STURM-LIOUVILLE PROBLEMS BY USING DAUBECHIES WAVELETS
    Panja, M. M.
    Saha, M. K.
    Basu, U.
    Datta, D.
    Mandal, B. N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (03): : 553 - 579
  • [2] Computing eigenelements of Sturm-Liouville problems by using Daubechies wavelets
    M. M. Panja
    M. K. Saha
    U. Basu
    D. Datta
    B. N. Mandal
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 553 - 579
  • [3] Sturm-Liouville problems
    Zettl, A
    SPECTRAL THEORY AND COMPUTATIONAL METHODS OF STURM-LIOUVILLE PROBLEMS, 1997, 191 : 1 - 104
  • [4] 关于Sturm-Liouville
    陈志浩
    工科数学, 1985, (04) : 51 - 53+24
  • [5] ON A STURM-LIOUVILLE PROBLEM
    CAMERA, GA
    APPLIED MATHEMATICS AND OPTIMIZATION, 1994, 30 (02): : 159 - 169
  • [6] On the Sturm-Liouville operator
    Sh. Bilal
    Differential Equations, 2012, 48 : 430 - 435
  • [7] Application of the Fractional Sturm-Liouville Theory to a Fractional Sturm-Liouville Telegraph Equation
    Ferreira, M.
    Rodrigues, M. M.
    Vieira, N.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (05)
  • [8] On the Sturm-Liouville operator
    Bilal, Sh.
    DIFFERENTIAL EQUATIONS, 2012, 48 (03) : 430 - 435
  • [9] The Sturm-Liouville group
    Markus, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 171 (1-2) : 335 - 365
  • [10] Computation of eigenvalues and solutions of regular Sturm-Liouville problems using Haar wavelets
    Bujurke, N. M.
    Salimath, C. S.
    Shiralashetti, S. C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (01) : 90 - 101