Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction

被引:294
|
作者
Huang, Jianfeng [1 ]
Hormann, Nicolas [2 ,3 ]
Oveisi, Emad [4 ]
Loiudice, Anna [1 ]
De Gregorio, Gian Luca [1 ]
Andreussi, Oliviero [2 ,3 ,5 ]
Marzari, Nicola [2 ,3 ]
Buonsanti, Raffaella [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Dept Chem Sci & Engn, Lab Nanochem Energy LNCE, CH-1950 Sion, Switzerland
[2] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Interdisciplinary Ctr Electron Microscopy CIME, CH-1015 Lausanne, Switzerland
[5] Univ North Texas, Dept Phys, Denton, TX 76203 USA
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
瑞士国家科学基金会; 欧盟地平线“2020”; 欧洲研究理事会;
关键词
CARBON-DIOXIDE; SPECTROSCOPIC OBSERVATION; GOLD NANOPARTICLES; COPPER; ELECTROREDUCTION; CU(100); RECONSTRUCTION; ELECTRODES; SURFACE; ELECTROCATALYSTS;
D O I
10.1038/s41467-018-05544-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In catalysis science stability is as crucial as activity and selectivity. Understanding the degradation pathways occurring during operation and developing mitigation strategies will eventually improve catalyst design, thus facilitating the translation of basic science to technological applications. Herein, we reveal the unique and general degradation mechanism of metallic nanocatalysts during electrochemical CO2 reduction, exemplified by different sized copper nanocubes. We follow their morphological evolution during operation and correlate it with the electrocatalytic performance. In contrast with the most common coalescence and dissolution/precipitation mechanisms, we find a potential-driven nanoclustering to be the predominant degradation pathway. Grand-potential density functional theory calculations confirm the role of the negative potential applied to reduce CO2 as the main driving force for the clustering. This study offers a novel outlook on future investigations of stability and degradation reaction mechanisms of nanocatalysts in electrochemical CO2 reduction and, more generally, in electroreduction reactions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction
    Jianfeng Huang
    Nicolas Hörmann
    Emad Oveisi
    Anna Loiudice
    Gian Luca De Gregorio
    Oliviero Andreussi
    Nicola Marzari
    Raffaella Buonsanti
    Nature Communications, 9
  • [2] Theoretical Investigation of the Adsorbate and Potential-Induced Stability of Cu Facets During Electrochemical CO2 and CO Reduction
    Yu, Henry
    Govindarajan, Nitish
    Weitzner, Stephen E.
    Serra-Maia, Rui F.
    Akhade, Sneha A.
    Varley, Joel B.
    CHEMPHYSCHEM, 2024, 25 (10)
  • [3] Electrochemical reduction of CO2 at metallic electrodes
    Augustynski, J
    Kedzierzawski, P
    Jermann, B
    ADVANCES IN CHEMICAL CONVERSIONS FOR MITIGATING CARBON DIOXIDE, 1998, 114 : 107 - 116
  • [4] Catalysts for efficient electrochemical reduction of CO2 to CO
    Kenis, Paul J. A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [5] Evolution of bismuth oxide catalysts during electrochemical CO2 reduction
    Wissink, Tim
    Man, Alex J. W.
    Chen, Wei
    Heinrichs, Jason M. J. J.
    van de Poll, Rim C. J.
    Figueiredo, Marta C.
    Hensen, Emiel J. M.
    JOURNAL OF CO2 UTILIZATION, 2023, 77
  • [6] Unveiling the potential of bismuth-based catalysts for electrochemical CO2 reduction
    Sabouhanian, Negar
    Lipkowski, Jacek
    Chen, Aicheng
    INDUSTRIAL CHEMISTRY & MATERIALS, 2025, 3 (02): : 131 - 150
  • [7] AgIn dendrite catalysts for electrochemical reduction of CO2 to CO
    Park, Hyanjoo
    Choi, Jihui
    Kim, Hoyoung
    Hwang, Eunkyoung
    Ha, Don-Hyung
    Ahn, Sang Hyun
    Kim, Soo-Kil
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 219 : 123 - 131
  • [8] Electrodeposited Ag catalysts for the electrochemical reduction of CO2 to CO
    Ham, Yu Seok
    Choe, Seunghoe
    Kim, Myung Jun
    Lim, Taeho
    Kim, Soo-Kil
    Kim, Jae Jeong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 208 : 35 - 43
  • [9] NiO/MWCNT Catalysts for Electrochemical Reduction of CO2
    Shahid M. Bashir
    Sk Safdar Hossain
    Sleem ur Rahman
    Shakeel Ahmed
    Mohammad M. Hossain
    Electrocatalysis, 2015, 6 : 544 - 553
  • [10] Covalent porous catalysts for electrochemical reduction of CO2
    Lu, Shuanglong
    Hu, Hongyin
    Sun, Huimin
    Yang, Fulin
    Zhu, Han
    Du, Mingliang
    Jin, Yinghua
    Zhang, Wei
    GREEN CHEMISTRY, 2024, 26 (10) : 5744 - 5769