Controlled synthesis of NiCo2O4@Ni-MOF on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction

被引:49
|
作者
Dai, Zhixin [1 ]
Du, Xiaoqiang [1 ]
Zhang, Xiaoshuang [2 ]
机构
[1] North Univ China, Sch Chem Engn & Technol, Xueyuan Rd 3, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Sci, Xueyuan Rd 3, Taiyuan 030051, Peoples R China
基金
美国国家科学基金会;
关键词
Oxygen evolution reaction; Urea oxidation reaction; Electrocatalytic; Ni foam; HIGH-PERFORMANCE ELECTROCATALYST; FACILE SYNTHESIS; WATER-OXIDATION; NANOSHEETS; CATALYSTS; MOF; FE; ELECTROOXIDATION; MECHANISM; ELECTRODE;
D O I
10.1016/j.ijhydene.2022.03.217
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterostructured materials with special interfaces and features give a unique character for much electrocatalytic process. In this work, the introduction of exogenous modifier Ni-MOF improved the reaction kinetics and morphology of the NiCo2O4@Ni-MOF/NF catalyst. Asobtained NiCo2O4@Ni-MOF/NF has excellent oxygen evolution reaction (OER) performance and urea oxidation reaction (UOR) performance. The catalyst need overpotential of 340 mV at a current density of 100 mA cm-2 for OER and a potential of 1.31 V at the same current density for UOR. The Tafel slopes of NiCo2O4@Ni-MOF/NF is 38.34 and 15.33 mV dec-1 for OER and UOR respectively, which is more superior than 78.58 and 66.73 mV dec-1 of NiCo2O4/NF. The nanosheets microstructure is beneficial to the adsorption and transport of electrolyte and the presence of a large number of mesoporous channels can also accelerate gas release, and then improves activity of the catalyst. Density functional theory calculation demonstrate that NiCo2O4 plays a role in absorbing water, while the existence of in situ generated NiOOH can promote the electron transfer efficiency. It is synergies of NiCo2O4 and in situ generated NiOOH that enhance the decomposition of water on the surface of the NiCo2O4@Ni-MOF/NF. This investigation provides a new strategy for the application of spinel oxide and MOF materials. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17252 / 17262
页数:11
相关论文
共 50 条
  • [1] Controlled synthesis of Sn doped Cu-Ni3S2 on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction
    Wen, Wei
    Du, Xiaoqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 85 : 48 - 58
  • [2] Controlled synthesis of M doped Co3O4 (M = Ce, Ni and Fe) on Ni foam as robust electrocatalyst for oxygen evolution reaction and urea oxidation reaction
    Wang, Haibin
    Du, Xiaoqiang
    Zhang, Xiaoshuang
    Li, Lu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 630 : 512 - 524
  • [3] Controlled synthesis of M doped N-Ni3S2 (M = Cu, Fe, Co and Ce) on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction
    Wen, Wei
    Du, Xiaoqiang
    Zhang, Xiaoshuang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 918
  • [4] Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction
    Patil, Komal
    Babar, Pravin
    Kim, Jin Hyeok
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (05): : 217 - 222
  • [5] NiCo/Ni/CuO nanosheets/nanowires on copper foam as an efficient and durable electrocatalyst for oxygen evolution reaction
    Wu, Xingqiang
    Lee, Husileng
    Liu, Hongzhen
    Lu, Liangjie
    Wu, Xiujuan
    Sun, Licheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (41) : 21354 - 21363
  • [6] Preparation of an Fe2Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction
    Ling, Xintong
    Du, Feng
    Zhang, Yintong
    Shen, Yan
    Li, Tao
    Alsaedi, Ahmed
    Hayat, Tasawar
    Zhou, Yong
    Zou, Zhigang
    RSC ADVANCES, 2019, 9 (57) : 33558 - 33562
  • [7] Controlled synthesis of Fe-Ni-S@CoSe2 on nickel foam as an efficient electrocatalyst for oxygen evolution reaction
    Wen, Tingting
    Liu, Weidong
    Wang, Limin
    Gong, Yaqiong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 966
  • [8] Spinel oxide CoFe2O4 grown on Ni foam as an efficient electrocatalyst for oxygen evolution reaction
    Zhu, Shasha
    Lei, Jinglei
    Qin, Yonghan
    Zhang, Lina
    Lu, Lijuan
    RSC ADVANCES, 2019, 9 (23) : 13269 - 13274
  • [9] Three-dimensional core-shell structured NiCo2O4@CoS/Ni-Foam electrocatalyst for oxygen evolution reaction and electrocatalytic oxidation of urea
    Adhikari, Sangeeta
    Kwon, Yongchai
    Kim, Do-Heyoung
    CHEMICAL ENGINEERING JOURNAL, 2020, 402
  • [10] Ce doped Ni(OH)2/Ni-MOF nanosheets as an efficient oxygen evolution and urea oxidation reactions electrocatalyst
    Cheng, Youwei
    Zhu, Lian
    Gong, Yaqiong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 416 - 425