Fast determination of 13C NMR chemical shifts using artificial neural networks

被引:63
|
作者
Meiler, J
Meusinger, R
Will, M
机构
[1] Goethe Univ Frankfurt, Inst Organ Chem, D-60439 Frankfurt, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Organ Chem, D-55099 Mainz, Germany
[3] BASF AG, D-67056 Ludwigshafen, Germany
关键词
D O I
10.1021/ci000021c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nine different artificial neural networks were trained with the spherically encoded chemical environments of more than 500 000 carbon atoms to predict their C-13 NMR chemical shifts. Based on these results the: PC-program "C_shift" was developed which allows the calculation:of the C-13 NMR spectra of any proposed molecular structure consisting of the covalently bonded elements C, H, N, O, P, S and the halogens. Results were obtained with a mean deviation as low as 1.8 ppm; this accuracy is equivalent to a determination on the basis of a large database but, in a time as short as known from increment calculations, was demonstrated exemplary using the natural agent epothilone A. The artificial neural networks allow simultaneously a precise and fast prediction of a large number of C-13 NMR spectra, needed for high throughout NMR and screening of a substance or spectra libraries.
引用
收藏
页码:1169 / 1176
页数:8
相关论文
共 50 条
  • [21] New relativistic computational schemes for 13C NMR chemical shifts
    D. O. Samultsev
    Yu. Yu. Rusakov
    L. B. Krivdin
    Russian Journal of Organic Chemistry, 2016, 52 : 1203 - 1204
  • [22] New Relativistic Computational Schemes for 13C NMR Chemical Shifts
    Samultsev, D. O.
    Rusakov, Yu. Yu.
    Krivdin, L. B.
    RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, 2016, 52 (08) : 1203 - 1204
  • [23] Modeling 13C NMR Chemical Shifts of Aliphatic Ethers and Thioethers
    Tong, Jianbo
    Xu, Xiameng
    Liu, Shuling
    Chen, Yang
    REVISTA DE CHIMIE, 2012, 63 (12): : 1204 - 1222
  • [24] Prediction of 13C NMR chemical shifts by artificial neural network. I. Partial charge model as atomic descriptor
    Kiryanov, Ilya I.
    Mukminov, Farit H.
    Tulyabaev, Arthur R.
    Khalilov, Leonard M.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 152 : 62 - 68
  • [25] Chemical shift prediction in 13C NMR spectroscopy using ensembles of message passing neural networks (MPNNs)
    Williamson, D.
    Ponte, S.
    Iglesias, I.
    Tonge, N.
    Cobas, C.
    Kemsley, E. K.
    JOURNAL OF MAGNETIC RESONANCE, 2024, 368
  • [26] AN APPLICATION OF NEURAL NETWORKS IN CHEMISTRY - PREDICTION OF C-13 NMR CHEMICAL-SHIFTS
    KVASNICKA, V
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 6 (01) : 63 - 76
  • [27] Quantitative analysis of deuterium using the isotopic effect on quaternary 13C NMR chemical shifts
    Darwish, Tamim A.
    Yepuri, Nageshwar Rao
    Holden, Peter J.
    James, Michael
    ANALYTICA CHIMICA ACTA, 2016, 927 : 89 - 98
  • [28] Simple method for identification of skeletons of aporphine alkaloids from 13C NMR data using artificial neural networks
    Rufino, AR
    Brant, AJC
    Santos, JBO
    Ferreira, MJP
    Emerenciano, VP
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2005, 45 (03) : 645 - 651
  • [29] Neural network for prediction of 13C NMR chemical shifts of fullerene C60 mono-adducts
    Kiryanov, Ilya I.
    Tulyabaev, Arthur R.
    Mukminov, Farit Kh.
    Khalilov, Leonard M.
    JOURNAL OF CHEMOMETRICS, 2018, 32 (09)
  • [30] Interpretation of substituent-induced 13C NMR chemical shifts of oxindoles
    Kapiller-Dezsofi, R
    Volk, B
    NEW JOURNAL OF CHEMISTRY, 2004, 28 (10) : 1214 - 1220