A Context-Aware BERT Retrieval Framework Utilizing Abstractive Summarization

被引:0
|
作者
Pan, Min [1 ]
Li, Teng [1 ]
Yang, Chenghao [2 ]
Zhou, Shuting [1 ]
Feng, Shaoxiong [1 ]
Fang, Youbin [1 ]
Li, Xingyu [1 ]
机构
[1] Hubei Normal Univ, Coll Comp & Informat Engn, Huangshi, Hubei, Peoples R China
[2] Univ Sydney, Fac Engn, Sydney, NSW, Australia
基金
中国国家自然科学基金;
关键词
Contextualized Semantic Information; Information Retrieval; Abstractive Summarization;
D O I
10.1109/WMAT55865.2022.00142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, the multi-stage reranking framework based on pre-trained language model BERT can significantly improve the ranking performance on information retrieval tasks. However, most of these BERT -based reranking frameworks independently process query-chunk pairs and ignore cross-passages interaction. The context information around each candidate passage is extremely important for relevance judgement. Existing relevance aggregation methods obtain context information through statistical method and lost part of semantic information. Therefore, to capture this crosspassages interaction, this paper proposes a context-aware BERT ranking framework that utilizing abstractive summarization to enhance text semantics. By utilizing PEGASUS to summarize both sides of candidate passage accurately and then concatenate them as the input sequence, BERT could acquire more semantic information under the limitation of the input sequence's length. The experimental results of two TREC data sets reveal the effectiveness of our proposed method in aggregating contextual semantic relevance.
引用
收藏
页码:873 / 878
页数:6
相关论文
共 50 条
  • [1] Context-Aware Entity Summarization
    Yan, Jihong
    Wang, Yanhua
    Gao, Ming
    Zhou, Aoying
    WEB-AGE INFORMATION MANAGEMENT, PT I, 2016, 9658 : 517 - 529
  • [2] A semantically enhanced text retrieval framework with abstractive summarization
    Pan, Min
    Li, Teng
    Liu, Yu
    Pei, Quanli
    Huang, Ellen Anne
    Huang, Jimmy X.
    COMPUTATIONAL INTELLIGENCE, 2024, 40 (01)
  • [3] Context-Aware Surveillance Video Summarization
    Zhang, Shu
    Zhu, Yingying
    Roy-Chowdhury, Amit K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5469 - 5478
  • [4] A context-aware semantic modeling framework for efficient image retrieval
    Arun, K. S.
    Govindan, V. K.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (04) : 1259 - 1285
  • [5] A context-aware semantic modeling framework for efficient image retrieval
    K. S. Arun
    V. K. Govindan
    International Journal of Machine Learning and Cybernetics, 2017, 8 : 1259 - 1285
  • [6] Context-aware media retrieval
    Mani, Ankur
    Sundaram, Hari
    IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2006, 4071 : 483 - 486
  • [7] Context-Aware Sarcasm Detection Using BERT
    Baruah, Arup
    Das, Kaushik Amar
    Barbhuiya, Ferdous Ahmed
    Dey, Kuntal
    FIGURATIVE LANGUAGE PROCESSING, 2020, : 83 - 87
  • [8] Japanese abstractive text summarization using BERT
    Iwasaki, Yuuki
    Yamashita, Akihiro
    Konno, Yoko
    Matsubayashi, Katsushi
    2019 INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2019,
  • [9] Unified extractive-abstractive summarization: a hybrid approach utilizing BERT and transformer models for enhanced document summarization
    Divya, S.
    Sripriya, N.
    Andrew, J.
    Mazzara, Manuel
    PeerJ Computer Science, 2024, 10 : 1 - 26
  • [10] Context-aware Service Retrieval in Uncertain Context
    Madkour, Mohcine
    Driss, El Ghanami
    Hasbi, Abderrahim
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 611 - 616