Bayesian Wind Speed Estimation Conditioned on Significant Wave Height for GNSS-R Ocean Observations

被引:31
|
作者
Clarizia, Maria Paola [1 ]
Ruf, Christopher S. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
A SATELLITE SCATTEROMETER; GPS SIGNALS; SEA; RADAR; MODEL; SMMR;
D O I
10.1175/JTECH-D-16-0196.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Spaceborne Global Navigation Satellite System reflectometry observations of the ocean surface are found to respond to components of roughness forced by local winds and to a longer wave swell that is only partially correlated with the local wind. This dual sensitivity is largest at low wind speeds. If left uncorrected, the error in wind speeds retrieved from the observations is strongly correlated with the significant wave height (SWH) of the ocean. ABayesian wind speed estimator is developed to correct for the long- wave sensitivity at low wind speeds. The approach requires a characterization of the joint probability of occurrence of wind speed and SWH, which is derived fromarchival reanalysis sea-state records. The Bayesian estimator is applied to spaceborne data collected by the Technology Demonstration Satellite-1 (TechDemoSat-1) and is found to provide significant improvement in wind speed retrieval at lowwinds, relative to a conventional retrieval that does not account for SWH. At higher wind speeds, the wind speed and SWHaremore highly correlated and there ismuch less need for the correction.
引用
收藏
页码:1193 / 1202
页数:10
相关论文
共 50 条
  • [1] Significant Wave Height Estimation Using Multi-Satellite Observations from GNSS-R
    Qin, Lingyu
    Li, Ying
    [J]. REMOTE SENSING, 2021, 13 (23)
  • [2] A Real-Time GNSS-R System for Monitoring Sea Surface Wind Speed and Significant Wave Height
    Xing, Jin
    Yu, Baoguo
    Yang, Dongkai
    Li, Jie
    Shi, Zhejia
    Zhang, Guodong
    Wang, Feng
    [J]. SENSORS, 2022, 22 (10)
  • [3] Construction of spaceborne GNSS-R ocean waves significant wave height retrieval model
    Bu, Jinwei
    Yu, Kegen
    Han, Shuai
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1920 - 1930
  • [4] Ocean Surface Wind Speed Retrieval Using Spaceborne GNSS-R
    Yang Dongkai
    Liu Yi
    Wang Feng
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (02) : 462 - 469
  • [5] The Study on Retrieval Technique of Significant Wave Height Using Airborne GNSS-R
    Xu, Fei
    Sun, Xiechang
    Liu, Xinning
    Li, Ruidong
    [J]. PROCEEDINGS OF THE 28TH CONFERENCE OF SPACECRAFT TT&C TECHNOLOGY IN CHINA: OPENNESS, INTEGRATION AND INTELLIGENT INTERCONNECTION, 2018, 445 : 401 - 411
  • [6] A GENERALIZED LINEAR OBSERVABLE FOR GNSS-R WIND SPEED RETRIEVALS OVER THE OCEAN
    Rodriguez-Alvarez, Nereida
    Garrison, James L.
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3810 - 3813
  • [7] Validation of SARAL/AltiKa significant wave height and wind speed observations over the North Indian Ocean
    Kumar, U. Mahesh
    Swain, D.
    Sasamal, S. K.
    Reddy, N. Narendra
    Ramanjappa, T.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2015, 135 : 174 - 180
  • [8] Evaluation of Spaceborne GNSS-R Retrieved Ocean Surface Wind Speed with Multiple Datasets
    Dong, Zhounan
    Jin, Shuanggen
    [J]. REMOTE SENSING, 2019, 11 (23)
  • [9] A simulator for GNSS-R polarimetric observations over the ocean
    Schiavulli, Domenico
    Ghavidel, Ali
    Camps, Adriano
    Migliaccio, Maurizio
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3802 - 3805
  • [10] Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters
    Bu, Jinwei
    Yu, Kegen
    Wang, Qiulan
    Li, Linghui
    Liu, Xinyu
    Zuo, Xiaoqing
    Chang, Jun
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (07): : 1321 - 1335