Estimation of Distribution using Population Queue based Variational Autoencoders

被引:0
|
作者
Bhattacharjee, Sourodeep [1 ]
Gras, Robin [2 ]
机构
[1] Univ Windsor, Sch Comp Sci, Windsor, ON, Canada
[2] Univ Windsor, Sch Comp Sci, Dept Biol Sci, Great Lakes Inst Environm Res, Windsor, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Estimation of Distribution Algorithms; Variational Autoencoders; Machine Learning; Combinatorial Optimization;
D O I
10.1109/cec.2019.8790077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new Estimation of Distribution algorithms (EDA) based on two novel Variational Autoencoders generative model building algorithms. The first method, Variational Autoencoder with Population Queue (VAE-EDA-Q), employs a queue of historical populations, which is updated at each iteration of EDA in order to smooth the data generation process. The second method uses Adaptive Variance Scaling (AVS) with VAE-EDA-Q to dynamically update the variance at which the probabilistic model is sampled. The results obtained prove our methods to be significantly more computationally efficient than state-of-the-art algorithms and perform significantly less number of fitness evaluations when tested on benchmark problems such as Trap-k and NK Landscapes. Moreover, we report results of applying our approach successfully to highly complex problems such as Trap 11, Trap 13, and NK Landscapes with neighborhood size K = 8 and K = 10.
引用
收藏
页码:1406 / 1414
页数:9
相关论文
共 50 条
  • [1] Visualizing population structure with variational autoencoders
    Battey, C. J.
    Coffing, Gabrielle C.
    Kern, Andrew D.
    G3-GENES GENOMES GENETICS, 2021, 11 (01):
  • [2] Bayesian estimation of muscle mechanisms and therapeutic targets using variational autoencoders
    Tune, Travis
    Kooiker, Kristina B.
    Davis, Jennifer
    Daniel, Thomas
    Moussavi-Harami, Farid
    BIOPHYSICAL JOURNAL, 2025, 124 (01) : 179 - 191
  • [3] State Estimation in Distribution Smart Grids Using Autoencoders
    Pereira Barbeiro, P. N.
    Krstulovic, J.
    Teixeira, H.
    Pereira, J.
    Soares, F. J.
    Iria, J. P.
    2014 IEEE 8TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO), 2014, : 358 - 363
  • [4] Leveraging Variational Autoencoders for Parameterized MMSE Estimation
    Baur, Michael
    Fesl, Benedikt
    Utschick, Wolfgang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 3731 - 3744
  • [5] Blind Equalization and Channel Estimation in Coherent Optical Communications Using Variational Autoencoders
    Lauinger, Vincent
    Buchali, Fred
    Schmalen, Laurent
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (09) : 2529 - 2539
  • [6] Unsupervised aspect-based summarization using variational autoencoders
    Shan, Huawei
    Lu, Dongyuan
    Zhang, Li
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [7] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788
  • [8] Energy disaggregation using variational autoencoders
    Langevin, Antoine
    Carbonneau, Marc-Andre
    Cheriet, Mohamed
    Gagnon, Ghyslain
    ENERGY AND BUILDINGS, 2022, 254
  • [9] Harmless overfitting: Using denoising autoencoders in estimation of distribution algorithms
    Probst, Malte
    Rothlauf, Franz
    2020, Microtome Publishing (21)
  • [10] Harmless Overfitting: Using Denoising Autoencoders in Estimation of Distribution Algorithms
    Probst, Malte
    Rothlauf, Franz
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21