Trapped Greenhouse Gases in the Permafrost Active Layer: Preliminary Results for Methane Peaks in Vertical Profiles of Frozen Alaskan Soil Cores

被引:14
|
作者
Byun, Eunji [1 ]
Yang, Ji-Woong [1 ]
Kim, Yongwon [2 ]
Ahn, Jinho [1 ]
机构
[1] Seoul Natl Univ, Sch Earth & Environm Sci, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99701 USA
基金
新加坡国家研究基金会;
关键词
permafrost; active layer; methane; gas permeability; greenhouse gas; ARCTIC TUNDRA; CARBON; EMISSIONS; FLUXES; CO2; MOISTURE; PEATLAND; RELEASE; WATER; HEAT;
D O I
10.1002/ppp.1935
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Degradation of organic carbon stored in permafrost may represent an additional source of atmospheric greenhouse gases (GHGs) in a warming climate. However, there is no clear understanding of how seasonal freeze-thaw affects gas permeability and emission of methane in permafrost soils, in part due to the lack of chemical and physical characterisation of the soils. Here, we report vertical profiles of CO2, CH4 and other soil properties with resolutions of 0.05-0.1m depth from five soil cores, drilled to 0.9m depth, in Alaskan permafrost during the early spring of 2013, when the ground was frozen under snow cover. Two cores from tundra and black spruce bog showed sudden increases in methane concentration (up to 416 mu mol litre(soil)(-1)), indicating excess CH4 trapped in gas-impermeable soil layers during the freezing period. Active-layer cooling in late autumn, producing a frozen surface and relatively warm sub-surface, may have allowed underground microbial activity and facilitated CH4 production, while the upward transport of CH4 was hampered by the frost. Our preliminary results show that estimating annual GHG efflux from permafrost regions can be complicated because of heterogeneous distributions of trapped methane within soil columns. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:477 / 484
页数:8
相关论文
共 1 条
  • [1] A model to characterize soil moisture and organic matter profiles in the permafrost active layer in support of radar remote sensing in Alaskan Arctic tundra
    Bakian-Dogaheh, Kazem
    Chen, Richard H.
    Yi, Yonghong
    Kimball, John S.
    Moghaddam, Mahta
    Tabatabaeenejad, Alireza
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (02)