We have previously reported that changes in thyroid status are associated with significant alterations in skeletal muscle blood flow during exercise and that changes in endothelium-dependent vasodilation may contribute to these blood flow abnormalities. The purpose of this study was to test the hypothesis that altered endothelium-dependent vasoconstriction is also associated with changes in thyroid status. To test this hypothesis, rats were rendered hypothyroid with propylthiouracil (Hypo, n = 14) or hyperthyroid with triiodothyronine (Hyper, n = 14) over similar to 3 mo. Treatment efficacy was confirmed by altered (P < 0.05) citrate synthase activity in several hindlimb skeletal muscles from Hypo and Hyper, compared with that in muscles from euthyroid rats (Eut, n = 12). Vascular rings were prepared from abdominal aortae, and responses to several vasoactive agents were determined in vitro. As found previously, maximal acetylcholine-induced vasorelaxation was modulated by thyroid status (Eut, 47 +/- 9; Hypo, 28 +/- 6; Hyper, 68 +/- 5%; P < 0.05). Contractile responses of vascular rings with intact endothelium to the endothelium-derived constrictor endothelin-1 (ET-1), however, were similar among groups across a range of ET-1 concentrations. In addition, maximal responses [Eut, 3.75 +/- 0.47; Hypo, 2.72 +/- 0.25; Hyper, 3.22 +/- 0.42 g; not significant (NS)] and sensitivities (Eut, 8.12 +/- 0.09; Hypo, 8.10 +/- 0.06; Hyper, 8.28 +/- 0.09 -log M; NS) to ET-1 were similar among groups. If these findings from the conduit-type abdominal aorta extend into resistance vasculature, it appears that changes in endothelium-dependent vasoconstriction do not contribute to skeletal muscle blood flow abnormalities associated with thyroid disease states.