Some remarks on rearrangements and functionals with non-constant density

被引:8
|
作者
Landes, Ruediger [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
rearrangements; energy functionals; properties of minimizing functions;
D O I
10.1002/mana.200310502
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conditions on non-constant densities of energy functionals are discussed, such that monotone rearrangement of functions decreases the value of the functional. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:560 / 570
页数:11
相关论文
共 50 条
  • [1] Connection and curvature in crystals with non-constant dislocation density
    Elzanowski, Marek Z.
    Parry, Gareth P.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (06) : 1714 - 1725
  • [2] A first order phase transition with non-constant density
    Bonetti, Elena
    Fabrizio, Mauro
    Fremond, Michel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 561 - 577
  • [3] NON-CONSTANT GAMMA
    STIGTER, CJ
    JOURNAL OF APPLIED METEOROLOGY, 1976, 15 (12): : 1326 - 1327
  • [4] An existence result for a model of granular material with non-constant density
    Gwiazda, P
    ASYMPTOTIC ANALYSIS, 2002, 30 (01) : 43 - 60
  • [5] Dynamics for a class of energy beam models with non-constant material density
    Bezerra, Flank D. M.
    Liu, Linfang
    Narciso, Vando
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (01):
  • [6] A theoretical and numerical study of density currents in non-constant shear flows
    Xue, M
    Xu, Q
    Droegemeier, KK
    SEVENTH CONFERENCE ON MESOSCALE PROCESSES, 1996, : 494 - 496
  • [7] Dynamics for a class of energy beam models with non-constant material density
    Flank D. M. Bezerra
    Linfang Liu
    Vando Narciso
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [8] 2ND-ORDER MODELING IN NON-CONSTANT DENSITY FLOWS
    JANICKA, J
    LUMLEY, JL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (09): : 1103 - 1103
  • [9] Soliton with non-constant velocity
    Zenchuk, AI
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (1-2) : 191 - 201
  • [10] ON LOCALLY NON-CONSTANT MAPPINGS
    OMILJANOWSKI, K
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4A (01): : 119 - 122