Non-Hermitian disorder in two-dimensional optical lattices

被引:87
|
作者
Tzortzakakis, A. F. [1 ]
Makris, K. G. [1 ,2 ]
Economou, E. N. [1 ,2 ]
机构
[1] Univ Crete, Phys Dept, Iraklion 71003, Greece
[2] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
PHOTONIC BAND-STRUCTURE; PARITY-TIME SYMMETRY; RANDOM-MATRIX THEORY; ANDERSON LOCALIZATION; SCALING THEORY; WAVES; PHYSICS; REAL; UNIVERSALITY; STATISTICS;
D O I
10.1103/PhysRevB.101.014202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the properties of two-dimensional lattices in the presence of non-Hermitian disorder. In the context of coupled mode theory, we consider random gain-loss distributions on every waveguide channel (on site disorder). Our work provides a systematic study of the interplay between disorder and non-Hermiticity. In particular, we study the eigenspectrum in the complex frequency plane and we examine the localization properties of the eigenstates, either by the participation ratio or the level spacing, defined in the complex plane. A modified level distribution function vs disorder seems to fit our computational results.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Flat band in two-dimensional non-Hermitian optical lattices
    Zhang, S. M.
    Jin, L.
    [J]. PHYSICAL REVIEW A, 2019, 100 (04)
  • [2] Wave Delocalization from Clustering in Two-Dimensional Non-Hermitian Disordered Lattices
    Piao, Xianji
    Park, Namkyoo
    [J]. ACS PHOTONICS, 2022, 9 (05): : 1655 - 1662
  • [3] Lopsided diffractions of distinct symmetries in two-dimensional non-Hermitian optical gratings
    Liu, Yi-Mou
    Gao, Feng
    Wu, Jin-Hui
    Artoni, M.
    La Rocca, G. C.
    [J]. PHYSICAL REVIEW A, 2019, 100 (04)
  • [4] Optical evidence for non-Hermitian topological phases of two-dimensional Dirac fermions
    Jiang, Peng
    Wang, Way
    Liu, Jun-Feng
    Ma, Zhongshui
    [J]. PHYSICAL REVIEW B, 2021, 104 (24)
  • [5] Non-Hermitian Delocalization in a Two-Dimensional Photonic Quasicrystal
    Zhang, Zhaoyang
    Liang, Shun
    Septembre, Ismael
    Yu, Jiawei
    Huang, Yongping
    Liu, Maochang
    Zhang, Yanpeng
    Xiao, Min
    Malpuech, Guillaume
    Solnyshkov, Dmitry
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (26)
  • [6] Two-dimensional anisotropic non-Hermitian Lieb lattice
    Xie, L. C.
    Wu, H. C.
    Zhang, X. Z.
    Jin, L.
    Song, Z.
    [J]. PHYSICAL REVIEW B, 2021, 104 (12)
  • [7] Stabilized Dirac points in one-dimensional non-Hermitian optical lattices
    Li, Shan
    Ke, Shaolin
    Wang, Bing
    Lu, Peixiang
    [J]. OPTICS LETTERS, 2022, 47 (18) : 4732 - 4735
  • [8] Non-Bloch bands in two-dimensional non-Hermitian systems
    Yokomizo, Kazuki
    Murakami, Shuichi
    [J]. PHYSICAL REVIEW B, 2023, 107 (19)
  • [9] Two-dimensional non-Hermitian harmonic oscillator: coherent states
    Izadparast, Masoumeh
    Mazharimousavi, S. Habib
    [J]. PHYSICA SCRIPTA, 2019, 94 (11)
  • [10] Topological Anderson insulator in two-dimensional non-Hermitian systems
    刘宏芳
    苏子贤
    张智强
    江华
    [J]. Chinese Physics B, 2020, (05) : 26 - 34