FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming

被引:8
|
作者
Perales Gomez, Angel Luis [1 ]
Lopez-de-Teruel, Pedro E. [1 ]
Ruiz, Alberto [2 ]
Garcia-Mateos, Gines [2 ]
Bernabe Garcia, Gregorio [1 ]
Garcia Clemente, Felix J. [1 ]
机构
[1] Univ Murcia, Dept Ingn & Tecnol Comp, Murcia 30100, Spain
[2] Univ Murcia, Dept Informat & Sistemas, Murcia 30100, Spain
关键词
Crop quality; Deep learning; Internet of things; Machine learning; Smart farming; THINGS IOT; CLASSIFICATION; PLATFORM; INTERNET; EDGE;
D O I
10.1007/s10586-021-03489-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The race for automation has reached farms and agricultural fields. Many of these facilities use the Internet of Things technologies to automate processes and increase productivity. Besides, Machine Learning and Deep Learning allow performing continuous decision making based on data analysis. In this work, we fill a gap in the literature and present a novel architecture based on IoT and Machine Learning / Deep Learning technologies for the continuous assessment of agricultural crop quality. This architecture is divided into three layers that work together to gather, process, and analyze data from different sources to evaluate crop quality. In the experiments, the proposed approach based on data aggregation from different sources reaches a lower percentage error than considering only one source. In particular, the percentage error achieved by our approach in the test dataset was 6.59, while the percentage error achieved exclusively using data from sensors was 6.71.
引用
收藏
页码:2163 / 2178
页数:16
相关论文
共 50 条
  • [1] FARMIT: continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming
    Ángel Luis Perales Gómez
    Pedro E. López-de-Teruel
    Alberto Ruiz
    Ginés García-Mateos
    Gregorio Bernabé García
    Félix J. García Clemente
    [J]. Cluster Computing, 2022, 25 : 2163 - 2178
  • [2] IoT-Based Smart Biofloc Monitoring System for Fish Farming Using Machine Learning
    Abid, Muhammad Adeel
    Amjad, Madiha
    Munir, Kashif
    Siddique, Hafeez Ur Rehman
    Jurcut, Anca Delia
    [J]. IEEE ACCESS, 2024, 12 : 86333 - 86345
  • [3] IoT-Based Smart Inventory Management System Using Machine Learning Techniques
    Manoharan, Geetha
    Kumar, Vipin
    Karthik, A.
    Asha, V
    Mohan, Chinnem Rama
    Nijhawan, Ginni
    [J]. 2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [4] Cyberattacks Detection in IoT-Based Smart City Applications Using Machine Learning Techniques
    Rashid, Md Mamunur
    Kamruzzaman, Joarder
    Hassan, Mohammad Mehedi
    Imam, Tasadduq
    Gordon, Steven
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (24) : 1 - 21
  • [5] IoT-based group size prediction and recommendation system using machine learning and deep learning techniques
    Chopra, Deepti
    Kaur, Arvinder
    [J]. SN APPLIED SCIENCES, 2021, 3 (02)
  • [6] IoT-based group size prediction and recommendation system using machine learning and deep learning techniques
    Deepti Chopra
    Arvinder Kaur
    [J]. SN Applied Sciences, 2021, 3
  • [7] Toward Secured IoT-Based Smart Systems Using Machine Learning
    Abdalzaher, Mohamed S. S.
    Fouda, Mostafa M. M.
    Elsayed, Hussein A. A.
    Salim, Mahmoud M. M.
    [J]. IEEE ACCESS, 2023, 11 : 20827 - 20841
  • [8] Machine Learning for Cloud and IoT-Based Smart Agriculture
    Et-taibi, Bouali
    Abid, Mohamed Riduan
    Boufounas, El-Mahjoub
    Bourhnane, Safae
    Benhaddou, Driss
    [J]. ADVANCES IN CONTROL POWER SYSTEMS AND EMERGING TECHNOLOGIES, VOL 2, ICESA 2023, 2024, : 181 - 187
  • [9] IoT-Assisted Crop Monitoring Using Machine Learning Algorithms for Smart Farming
    Apat, Shraban Kumar
    Mishra, Jyotirmaya
    Raju, K. Srujan
    Padhy, Neelamadhab
    [J]. NEXT GENERATION OF INTERNET OF THINGS, 2023, 445 : 1 - 11
  • [10] IoT-based Smart Greenhouse with Disease Prediction using Deep Learning
    Fatima, Neda
    Siddiqui, Salman Ahmad
    Ahmad, Anwar
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 113 - 121