Quantum and classical statistical mechanics of a class of non-Hermitian Hamiltonians

被引:19
|
作者
Jones, H. F. [1 ]
Moreira, E. S., Jr. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[2] Univ Fed Itajuba, Inst Ciencias Exatas, BR-37500903 Itajuba, MG, Brazil
关键词
THERMODYNAMICS; REALITY;
D O I
10.1088/1751-8113/43/5/055307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper investigates the thermodynamics of a large class of non-Hermitian, PT-symmetric oscillators, whose energy spectrum is entirely real. The spectrum is estimated by second-order WKB approximation, which turns out to be very accurate even for small quantum numbers, and used to generate the quantum partition function. Graphs showing the thermal behavior of the entropy and the specific heat, at all regimes of temperature, are given. To obtain the corresponding classical partition function, it turns out to be necessary in general to integrate over a complex 'phase space'. For the wrong-sign quartic, whose equivalent Hermitian Hamiltonian is known exactly, how this formulation arises, starting from the Hermitian case, is demonstrated explicitly.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Non-Hermitian Hamiltonians with Real Spectrum in Quantum Mechanics
    J. da Providência
    N. Bebiano
    J. P. da Providência
    [J]. Brazilian Journal of Physics, 2011, 41 : 78 - 85
  • [2] Non-Hermitian Hamiltonians with Real Spectrum in Quantum Mechanics
    da Providencia, J.
    Bebiano, N.
    da Providencia, J. P.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (01) : 78 - 85
  • [3] Statistical mechanics for non-Hermitian quantum systems
    Cao, Kui
    Kou, Su-Peng
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [4] Linear Quantum Entropy and Non-Hermitian Hamiltonians
    Sergi, Alessandro
    Giaquinta, Paolo V.
    [J]. ENTROPY, 2016, 18 (12):
  • [5] The quantum brachistochrone problem for non-Hermitian Hamiltonians
    Assis, Paulo E. G.
    Fring, Andreas
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
  • [6] Non-Hermitian quantum Hamiltonians with PT symmetry
    Jones-Smith, Katherine
    Mathur, Harsh
    [J]. PHYSICAL REVIEW A, 2010, 82 (04)
  • [7] Relativistic non-Hermitian quantum mechanics
    Jones-Smith, Katherine
    Mathur, Harsh
    [J]. PHYSICAL REVIEW D, 2014, 89 (12):
  • [8] Pseudospectra in non-Hermitian quantum mechanics
    Krejcirik, D.
    Siegl, P.
    Tater, M.
    Viola, J.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [9] Non-Hermitian noncommutative quantum mechanics
    J. F. G. dos Santos
    F. S. Luiz
    O. S. Duarte
    M. H. Y. Moussa
    [J]. The European Physical Journal Plus, 134
  • [10] Editorial: Non-Hermitian quantum mechanics
    Hatano, Naomichi
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (12):