Photon Mean Free Paths, Scattering, and Ever-Increasing Telescope Resolution

被引:11
|
作者
Judge, P. G. [1 ]
Kleint, L. [2 ]
Uitenbroek, H. [3 ]
Rempel, M. [1 ]
Suematsu, Y. [4 ]
Tsuneta, S. [4 ]
机构
[1] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
[2] Univ Appl Sci & Arts Northwestern Switzerland, Inst Technol 4D, CH-5210 Windisch, Switzerland
[3] Natl Solar Observ, Sunspot, NM 88349 USA
[4] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo, Japan
基金
美国国家科学基金会;
关键词
Chromosphere; Instrumental effects; Photosphere; Spectrum; theory; LTE RADIATIVE-TRANSFER; SOLAR CHROMOSPHERE; STELLAR ATMOSPHERES; MAGNETIC FLUXTUBES; QUIET SUN; LINES; SPECTRUM; SHEET;
D O I
10.1007/s11207-014-0643-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We revisit an old question: what are the effects of observing stratified atmospheres on scales below a photon mean free path lambda? The mean free path of photons emerging from the solar photosphere and chromosphere is approximate to 10(2) km. Using current 1 m-class telescopes, lambda is on the order of the angular resolution. But the Daniel K. Inoue Solar Telescope will have a diffraction limit of 0.020 '' near the atmospheric cutoff at 310 nm, corresponding to 14 km at the solar surface. Even a small amount of scattering in the source function leads to physical smearing due to this solar "fog", with effects similar to a degradation of the telescope point spread function. We discuss a unified picture that depends simply on the nature and amount of scattering in the source function. Scalings are derived from which the scattering in the solar atmosphere can be transcribed into an effective Strehl ratio, a quantity useful to observers. Observations in both permitted (e.g., Fe I 630.2 nm) and forbidden (Fe I 525.0 nm) lines will shed light on both instrumental performance as well as on small-scale structures in the solar atmosphere.
引用
收藏
页码:979 / 996
页数:18
相关论文
共 26 条
  • [1] Photon Mean Free Paths, Scattering, and Ever-Increasing Telescope Resolution
    P. G. Judge
    L. Kleint
    H. Uitenbroek
    M. Rempel
    Y. Suematsu
    S. Tsuneta
    Solar Physics, 2015, 290 : 979 - 996
  • [2] Ever-increasing resolution
    Kelly Rae Chi
    Nature, 2009, 462 : 676 - 678
  • [3] Microscopy: Ever-increasing resolution
    Chi, Kelly Rae
    NATURE, 2009, 462 (7273) : 675 - 678
  • [4] TRANSPORT AND SCATTERING MEAN FREE PATHS OF CLASSICAL WAVES
    BUSCH, K
    SOUKOULIS, CM
    ECONOMOU, EN
    PHYSICAL REVIEW B, 1994, 50 (01): : 93 - 98
  • [5] The rigidity dependence of solar particle scattering mean free paths
    Dröge, M
    ASTROPHYSICAL JOURNAL, 2000, 537 (02): : 1073 - 1079
  • [6] Mean Free Paths and Cross Sections for Electron Scattering from Liquid Water
    Sinha, Nidhi
    Antony, Bobby
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (21): : 5479 - 5488
  • [7] Electron-phonon scattering and mean free paths in D-carbon
    Bu, Xiangtian
    Wang, Shudong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (07) : 4010 - 4014
  • [8] Mean free paths for inelastic electron scattering in silicon and poly(styrene) nanospheres
    Chou, TM
    Libera, M
    ULTRAMICROSCOPY, 2003, 94 (01) : 31 - 35
  • [9] ESTIMATE OF THE INFLUENCE OF THE SCATTERING INDICATRIX ON PHOTON MEAN FREE-PATH IN CLOUDS
    GRECHKO, EI
    DVORYASHIN, SV
    REDKO, AY
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1982, 18 (10): : 1105 - 1109
  • [10] Measurement of mean free paths for inelastic electron scattering of Si and SiO2
    Lee, CW
    Ikematsu, Y
    Shindo, D
    JOURNAL OF ELECTRON MICROSCOPY, 2002, 51 (03) : 143 - 148