A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance

被引:447
|
作者
Jang, Cholsoon [1 ,2 ]
Oh, Sungwhan F. [3 ]
Wada, Shogo [1 ]
Rowe, Glenn C. [2 ,7 ]
Liu, Laura [2 ]
Chan, Mun Chun [2 ]
Rhee, James [2 ,4 ]
Hoshino, Atsushi [1 ]
Kim, Boa [1 ]
Ibrahim, Ayon [1 ]
Baca, Luisa G. [2 ]
Kim, Esl [2 ]
Ghosh, Chandra C. [2 ]
Parikh, Samir M. [2 ]
Jiang, Aihua [2 ]
Chu, Qingwei [1 ]
Forman, Daniel E. [5 ]
Lecker, Stewart H. [2 ]
Krishnaiah, Saikumari [1 ]
Rabinowitz, Joshua D. [6 ]
Weljie, Aalim M. [1 ]
Baur, Joseph A. [1 ]
Kasper, Dennis L. [3 ]
Arany, Zoltan [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Dept Microbiol & Immunobiol, Boston, MA USA
[4] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA 02114 USA
[5] Univ Pittsburgh, Dept Med, Pittsburgh, PA USA
[6] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[7] Univ Alabama Birmingham, Dept Med, Birmingham, AL 35294 USA
基金
美国国家卫生研究院;
关键词
PGC-1-ALPHA; MUSCLE; EXPRESSION; CAPACITY; PLASMA; RISK;
D O I
10.1038/nm.4057
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear(1-3). Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species(4), a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1 alpha; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1 alpha to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
引用
收藏
页码:421 / +
页数:9
相关论文
共 50 条
  • [1] A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance
    Cholsoon Jang
    Sungwhan F Oh
    Shogo Wada
    Glenn C Rowe
    Laura Liu
    Mun Chun Chan
    James Rhee
    Atsushi Hoshino
    Boa Kim
    Ayon Ibrahim
    Luisa G Baca
    Esl Kim
    Chandra C Ghosh
    Samir M Parikh
    Aihua Jiang
    Qingwei Chu
    Daniel E Forman
    Stewart H Lecker
    Saikumari Krishnaiah
    Joshua D Rabinowitz
    Aalim M Weljie
    Joseph A Baur
    Dennis L Kasper
    Zoltan Arany
    Nature Medicine, 2016, 22 : 421 - 426
  • [2] Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus
    Beck, HC
    FEMS MICROBIOLOGY LETTERS, 2005, 243 (01) : 37 - 44
  • [3] Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss
    Shah, S. H.
    Crosslin, D. R.
    Haynes, C. S.
    Nelson, S.
    Turer, C. B.
    Stevens, R. D.
    Muehlbauer, M. J.
    Wenner, B. R.
    Bain, J. R.
    Laferrere, B.
    Gorroochurn, P.
    Teixeira, J.
    Brantley, P. J.
    Stevens, V. J.
    Hollis, J. F.
    Appel, L. J.
    Lien, L. F.
    Batch, B.
    Newgard, C. B.
    Svetkey, L. P.
    DIABETOLOGIA, 2012, 55 (02) : 321 - 330
  • [4] Cardiac branched-chain amino acid oxidation is reduced during insulin resistance in the heart
    Fillmore, Natasha
    Wagg, Cory S.
    Zhang, Liyan
    Fukushima, Arata
    Lopaschuk, Gary D.
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2018, 315 (05): : E1046 - E1052
  • [5] Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss
    S. H. Shah
    D. R. Crosslin
    C. S. Haynes
    S. Nelson
    C. B. Turer
    R. D. Stevens
    M. J. Muehlbauer
    B. R. Wenner
    J. R. Bain
    B. Laferrère
    P. Gorroochurn
    J. Teixeira
    P. J. Brantley
    V. J. Stevens
    J. F. Hollis
    L. J. Appel
    L. F. Lien
    B. Batch
    C. B. Newgard
    L. P. Svetkey
    Diabetologia, 2012, 55 : 321 - 330
  • [6] Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels
    Yuvaraj Mahendran
    Anna Jonsson
    Christian T. Have
    Kristine H. Allin
    Daniel R. Witte
    Marit E. Jørgensen
    Niels Grarup
    Oluf Pedersen
    Tuomas O. Kilpeläinen
    Torben Hansen
    Diabetologia, 2017, 60 : 873 - 878
  • [7] Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels
    Mahendran, Yuvaraj
    Jonsson, Anna
    Have, Christian T.
    Allin, Kristine H.
    Witte, Daniel R.
    Jorgensen, Marit E.
    Grarup, Niels
    Pedersen, Oluf
    Kilpelainen, Tuomas O.
    Hansen, Torben
    DIABETOLOGIA, 2017, 60 (05) : 873 - 878
  • [8] Insulin Resistance and Impaired Branched-Chain Amino Acid Metabolism in Alzheimer's Disease
    Liu, Rui
    Zhang, Lei
    You, Hao
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 93 (03) : 847 - 862
  • [10] TRANSPORT REGULATION OF BRANCHED-CHAIN AMINO-ACID OXIDATION
    HUTSON, SM
    ALPHA-KETO ACID DEHYDROGENASE COMPLEXES : ORGANIZATION, REGULATION, AND BIOMEDICAL RAMIFICATIONS: A TRIBUTE TO LESTER J REED, 1989, 573 : 405 - 406