A simple approach to analyzing clustered longitudinal data

被引:2
|
作者
Stephenson, Matthew [1 ]
Ali, R. Ayesha [1 ]
Darlington, Gerarda A. [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada
关键词
Clustered binary data; Cluster weighting; Generalized estimating equations (GEE); Informative cluster size; Primary 62J02 General nonlinear regression; Secondary 62J12 Generalized linear models; INFERENCE; SIZE;
D O I
10.1080/03610918.2015.1096380
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When modeling correlated binary data in the presence of informative cluster sizes, generalized estimating equations with either resampling or inverse-weighting, are often used to correct for estimation bias. However, existing methods for the clustered longitudinal setting assume constant cluster sizes over time. We present a subject-weighted generalized estimating equations scheme that provides valid parameter estimation for the clustered longitudinal setting while allowing cluster sizes to change over time. We compare, via simulation, the performance of existing methods to our subject-weighted approach. The subject-weighted approach was the only method that showed negligible bias, with excellent coverage, for all model parameters.
引用
收藏
页码:3553 / 3562
页数:10
相关论文
共 50 条
  • [1] Bayesian approach in analyzing clustered interval-censored data.
    Wong, M. C. M.
    Lo, E. C. M.
    Lam, K. F.
    [J]. JOURNAL OF DENTAL RESEARCH, 2003, 82 : B267 - B267
  • [2] RE-EM trees: a data mining approach for longitudinal and clustered data
    Sela, Rebecca J.
    Simonoff, Jeffrey S.
    [J]. MACHINE LEARNING, 2012, 86 (02) : 169 - 207
  • [3] RE-EM trees: a data mining approach for longitudinal and clustered data
    Rebecca J. Sela
    Jeffrey S. Simonoff
    [J]. Machine Learning, 2012, 86 : 169 - 207
  • [4] A model for analyzing clustered occurrence data
    Hwang, Wen-Han
    Huggins, Richard
    Stoklosa, Jakub
    [J]. BIOMETRICS, 2022, 78 (02) : 598 - 611
  • [5] A Bayesian approach for analyzing zero-inflated clustered count data with dispersion
    Choo-Wosoba, Hyoyoung
    Gaskins, Jeremy
    Levy, Steven
    Datta, Somnath
    [J]. STATISTICS IN MEDICINE, 2018, 37 (05) : 801 - 812
  • [6] A COMPARISON OF METHODS FOR ANALYZING STUDIES WITH CLUSTERED DATA
    BIRKETT, NJ
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1988, 128 (04) : 933 - 934
  • [7] A comparison of regression approaches for analyzing clustered data
    Desai, Manisha
    Begg, Melissa D.
    [J]. AMERICAN JOURNAL OF PUBLIC HEALTH, 2008, 98 (08) : 1425 - 1429
  • [8] A Bayesian Hierarchical Regression Approach to Clustered and Longitudinal Data in Empirical Legal Studies
    Anderson, William
    Wells, Martin T.
    [J]. JOURNAL OF EMPIRICAL LEGAL STUDIES, 2010, 7 (04) : 634 - 663
  • [9] A SIMPLE AND EFFECTIVE APPROACH FOR ANALYZING MULTIVARIATE LONGITUDINAL HEALTH OUTCOMES IN OBSERVATIONAL STUDIES
    Kuhn, E.
    Spielmann, R.
    Ochs, L.
    Koh, W. Y.
    Tu, C.
    [J]. VALUE IN HEALTH, 2014, 17 (03) : A167 - A167
  • [10] Multilevel Growth Modeling: An Introductory Approach to Analyzing Longitudinal Data for Evaluators
    Gee, Kevin A.
    [J]. AMERICAN JOURNAL OF EVALUATION, 2014, 35 (04) : 543 - 561