New primal and dual-mixed finite element methods for stable image registration with singular regularization

被引:3
|
作者
Barnafi, Nicolas [1 ]
Gatica, Gabriel N. [2 ,3 ]
Hurtado, Daniel E. [4 ,5 ,6 ,7 ]
Miranda, Willian [2 ,3 ]
Ruiz-Baier, Ricardo [8 ,9 ,10 ]
机构
[1] Politecn Milan, MOX Modellist & Calcolo Sci, Dipartimento Matemat F Brioschi, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion, Chile
[3] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[4] Pontificia Univ Catolica Chile, Sch Engn, Dept Struct & Geotech Engn, Santiago 4860, Chile
[5] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Engn, Santiago 4860, Chile
[6] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Med, Santiago 4860, Chile
[7] Pontificia Univ Catolica Chile, Inst Biol & Med Engn, Sch Biol Sci, Santiago 4860, Chile
[8] Monash Univ, Sch Math, 9 Rainforest Walk, Melbourne, Vic 3800, Australia
[9] Sechenov Univ, Inst Comp Sci & Math Modelling, Moscow, Russia
[10] Univ Adventista Chile, Casilla 7-D, Chillan, Chile
来源
关键词
Deformable image registration; finite elements; mixed finite elements; LINEAR ELASTICITY;
D O I
10.1142/S021820252150024X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work introduces and analyzes new primal and dual-mixed finite element methods for deformable image registration, in which the regularizer has a nontrivial kernel, and constructed under minimal assumptions of the registration model: Lipschitz continuity of the similarity measure and ellipticity of the regularizer on the orthogonal complement of its kernel. The aforementioned singularity of the regularizer suggests to modify the original model by incorporating the additional degrees of freedom arising from its kernel, thus granting ellipticity of the former on the whole solution space. In this way, we are able to prove well-posedness of the resulting extended primal and dual-mixed continuous formulations, as well as of the associated Galerkin schemes. A priori error estimates and corresponding rates of convergence are also established for both discrete methods. Finally, we provide numerical examples confronting our formulations with the standard ones, which prove our finite element methods to be particularly more efficient on the registration of translations and rotations, in addition for the dual-mixed approach to be much more suitable for the quasi-incompressible case, and all the above without losing the flexibility to solve problems arising from more realistic scenarios such as the image registration of the human brain.
引用
收藏
页码:979 / 1020
页数:42
相关论文
共 50 条
  • [1] Primal and Mixed Finite Element Methods for Deformable Image Registration Problems
    Barnafi, Nicolas
    Gatica, Gabriel N.
    Hurtado, Daniel E.
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (04): : 2529 - 2567
  • [2] A comparison of primal- and dual-mixed finite element formulations for Timoshenko beams
    E. Bertóti
    Engineering with Computers, 2015, 31 : 99 - 111
  • [3] A comparison of primal- and dual-mixed finite element formulations for Timoshenko beams
    Bertoti, E.
    ENGINEERING WITH COMPUTERS, 2015, 31 (01) : 99 - 111
  • [4] Dual-mixed finite element methods for the stationary Boussinesq problem
    Colmenares, Eligio
    Neilan, Michael
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (07) : 1828 - 1850
  • [5] DUAL-MIXED FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS
    Howell, Jason S.
    Walkington, Noel J.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (03): : 789 - 805
  • [6] Analysis of the coupling of primal and dual-mixed finite element methods for a two-dimensional fluid-solid interaction problem
    Gatica, Gabriel N.
    Marquez, Antonio
    Meddahi, Salim
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) : 2072 - 2097
  • [7] PRIMAL-DUAL MIXED FINITE ELEMENT METHODS FOR THE ELLIPTIC CAUCHY PROBLEM
    Burman, Erik
    Larson, Mats G.
    Oksanen, Lauri
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3480 - 3509
  • [8] Dual-mixed hp finite element model for elastic cylindrical shells
    Toth, Balazs
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (03): : 236 - 252
  • [9] PRIMAL DUAL MIXED FINITE ELEMENT METHODS FOR INDEFINITE ADVECTION-DIFFUSION EQUATIONS
    Burman, Erik
    He, Cuiyu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (06) : 2785 - 2811
  • [10] Dual-mixed hp finite element methods using first-order stress functions and rotations
    E. Bertóti
    Computational Mechanics, 2000, 26 : 39 - 51