Improvement of Global Ionospheric TEC Derivation with Multi-Source Data in Modip Latitude

被引:4
|
作者
Fu, Weizheng [1 ,2 ]
Ma, Guanyi [1 ,3 ]
Lu, Weijun [1 ,3 ]
Maruyama, Takashi [4 ]
Li, Jinghua [1 ]
Wan, Qingtao [1 ]
Fan, Jiangtao [1 ]
Wang, Xiaolan [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100101, Peoples R China
[2] Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Kyoto 6110011, Japan
[3] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
[4] Natl Inst Informat & Commun Technol, Tokyo 1838795, Japan
基金
中国国家自然科学基金;
关键词
global ionospheric derivation; total electron content (TEC); multi-source data; modip latitude; TOTAL ELECTRON-CONTENT; INSTRUMENTAL BIASES; SATELLITE ALTIMETRY; MAPS; GNSS; VTEC; VARIABILITY;
D O I
10.3390/atmos12040434
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global ionospheric total electron content (TEC) is generally derived with ground-based Global Navigation Satellite System (GNSS) observations based on mathematical models in a solar-geomagnetic reference frame. However, ground-based observations are not well-distributed. There is a lack of observations over sparsely populated areas and vast oceans, where the accuracy of TEC derivation is reduced. Additionally, the modified dip (modip) latitude is more suitable than geomagnetic latitude for the ionosphere. This paper investigates the improvement of global TEC with multi-source data and modip latitude, and a simulation with International Reference Ionosphere (IRI) model is developed. Compared with using ground-based observations in geomagnetic latitude, the mean improvement was about 10.88% after the addition of space-based observations and the adoption of modip latitude. Nevertheless, the data from JASON-2 satellite altimetry and COSMIC occultation are sparsely-sampled, which makes the IRI TEC a reasonable estimation for the areas without observation. By using multi-source data from ground-based, satellite-based and IRI-produced observations, global TEC was derived in both geomagnetic and modip latitudes for 12 days of four seasons in 2014 under geomagnetic quiet conditions. The average root-mean-square error (RMSE) of the fitting was reduced by 7.02% in modip latitude. The improvement was largest in March and smallest in June.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Residual Analysis of Global Ionospheric Maps Using Modip Latitude
    Azpilicueta, F.
    Brunini, C.
    GEODETIC REFERENCE FRAMES, 2009, 134 : 311 - 316
  • [2] Global ionospheric maps from GPS observations using modip latitude
    Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del bosque s/n, 1900 La Plata, Argentina
    不详
    Adv. Space Res., 2006, 11 (2324-2331):
  • [3] Global ionospheric maps from GPS observations using modip latitude
    Azpilicueta, F.
    Brunini, C.
    Radicella, S. M.
    MIDDLE AND UPPER ATMOSPHERES, ACTIVE EXPERIMENTS, AND DUSTY PLASMAS, 2006, 38 (11): : 2324 - +
  • [4] Global ionospheric maps from GPS observations using modip latitude
    Azplllcueta, F.
    Brunini, C.
    Radicella, S. M.
    ADVANCES IN SPACE RESEARCH, 2006, 38 (11) : 2324 - 2331
  • [5] A new global TEC empirical model based on fusing multi-source data
    Feng, Jiandi
    Zhang, Ting
    Li, Wang
    Zhao, Zhenzhen
    Han, Baomin
    Wang, Kaixin
    GPS SOLUTIONS, 2023, 27 (01)
  • [6] A new global TEC empirical model based on fusing multi-source data
    Jiandi Feng
    Ting Zhang
    Wang Li
    Zhenzhen Zhao
    Baomin Han
    Kaixin Wang
    GPS Solutions, 2023, 27
  • [7] The multi-source data fusion global ionospheric modeling software-IonoGim
    Chen, Peng
    Chen, Jiajun
    ADVANCES IN SPACE RESEARCH, 2014, 53 (11) : 1610 - 1622
  • [8] Global Coding of Multi-Source Surveillance Video Data
    Xiao, Jing
    Chen, Yu
    Liao, Liang
    Hu, Jinhui
    Hu, Ruimin
    2015 DATA COMPRESSION CONFERENCE (DCC), 2015, : 33 - 42
  • [9] Predicting Global Seafloor Topography Using Multi-Source Data
    Hu, Min Zhang
    Li, Jian Cheng
    Li, Hui
    Shen, Chong Yang
    Jin, Tao Yong
    Xing, Le Lin
    MARINE GEODESY, 2015, 38 (02) : 176 - 189
  • [10] Multi-source Data Clustering
    Li, Tiancheng
    Corchado, Juan M.
    Bajo, Javier
    Sun, Shudong
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 830 - 837