Modeling and computing magnetocaloric systems using the Python']Python framework heatrapy

被引:11
|
作者
Silva, D. J. [1 ,2 ]
Amaral, J. S. [1 ,2 ]
Amaral, V. S. [1 ,2 ]
机构
[1] Univ Aveiro, Aveiro Inst Mat, Dept Phys, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Aveiro Inst Mat, CICECO, P-3810193 Aveiro, Portugal
关键词
Heat transfer; Thermodynamics; Magnetocaloric effect; Heatrapy; NUMERICAL-SIMULATION; TEMPERATURE SPAN; FLUID-FLOW; THERMODYNAMICS; REFRIGERATION; OPTIMIZATION;
D O I
10.1016/j.ijrefrig.2019.06.014
中图分类号
O414.1 [热力学];
学科分类号
摘要
Among all ferroic-based thermotechnologies, magnetocaloric refrigeration has become one of the most reported alternatives to vapor-compression systems. Hence, the modeling, and respective computation, of magnetocaloric systems has become of paramount importance in designing new devices. The need to optimize various adjustable model parameters makes overall computational costs a real-life limitation to these computational explorations. Recently, the heatrapy Python framework was made available, which aims at simulating caloric effects and thermal devices. In this work, two simple models are implemented in the heatrapy framework and are described and validated: one fully solid state magnetocaloric system, and one hydraulic active magnetic regenerative system. Both models show considerably reduced computational costs. (C) 2019 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:278 / 282
页数:5
相关论文
共 50 条
  • [1] Heatrapy: A flexible Python']Python framework for computing dynamic heat transfer processes involving caloric effects in 1.5D systems
    Silva, D. J.
    Amaral, J. S.
    Amaral, V. S.
    [J]. SOFTWAREX, 2018, 7 : 373 - 382
  • [2] Python']Python for scientific computing education: Modeling of queueing systems
    Dolgopolovas, Vladimiras
    Dagiene, Valentina
    Minkevicius, Saulius
    Sakalauskas, Leonidas
    [J]. SCIENTIFIC PROGRAMMING, 2014, 22 (01) : 37 - 51
  • [3] A Python']Python surrogate modeling framework with derivatives
    Bouhlel, Mohamed Amine
    Hwang, John T.
    Bartoli, Nathalie
    Lafage, Remi
    Morlier, Joseph
    Martins, Joaquim R. R. A.
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2019, 135
  • [4] Parallel distributed computing using Python']Python
    Dalcin, Lisandro D.
    Paz, Rodrigo R.
    Kler, Pablo A.
    Cosimo, Alejandro
    [J]. ADVANCES IN WATER RESOURCES, 2011, 34 (09) : 1124 - 1139
  • [5] Glycosylator: a Python']Python framework for the rapid modeling of glycans
    Lemmin, Thomas
    Soto, Cinque
    [J]. BMC BIOINFORMATICS, 2019, 20 (01)
  • [6] ssbio: a Python']Python framework for structural systems biology
    Mih, Nathan
    Brunk, Elizabeth
    Chen, Ke
    Catoiu, Edward
    Sastry, Anand
    Kavvas, Erol
    Monk, Jonathan M.
    Zhang, Zhen
    Palsson, Bernhard O.
    [J]. BIOINFORMATICS, 2018, 34 (12) : 2155 - 2157
  • [7] automan: A Python']Python-Based Automation Framework for Numerical Computing
    Ramachandran, Prabhu
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2018, 20 (05) : 81 - 97
  • [8] pyFOOMB: Python']Python framework for object oriented modeling of bioprocesses
    Hemmerich, Johannes
    Tenhaef, Niklas
    Wiechert, Wolfgang
    Noack, Stephan
    [J]. ENGINEERING IN LIFE SCIENCES, 2021, 21 (3-4): : 242 - 257
  • [9] Scientific computing with python']python
    Beazley, DM
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS IX, 2000, 216 : 49 - 58
  • [10] Python']Python for scientific computing
    Oliphant, Travis E.
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 10 - 20