Existence, uniqueness, and regularity of optimal transport maps

被引:19
|
作者
Figalli, Alessio [1 ]
机构
[1] Scuola Normale Super Pisa, I-56100 Pisa, Italy
关键词
optimal transportation; existence; uniqueness; approximate di. erentiability; concavity-estimate; displacement convexity;
D O I
10.1137/060665555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Adapting some techniques and ideas of McCann [Duke Math. J., 80 (1995), pp. 309-323], we extend a recent result with Fathi [Optimal Transportation on Manifolds, preprint] to yield existence and uniqueness of a unique transport map in very general situations, without any integrability assumption on the cost function. In particular this result applies for the optimal transportation problem on an n-dimensional noncompact manifold M with a cost function induced by a C-2-Lagrangian, provided that the source measure vanishes on sets with sigma-finite (n-1)-dimensional Hausdorff measure. Moreover we prove that in the case c(x, y) = d(2)(x, y), the transport map is approximatively differentiable a.e. with respect to the volume measure, and we extend some results of [D. Cordero-Erasquin, R. J. McCann, and M. Schmuckenschlager, Invent. Math., 146 (2001), pp. 219-257] about concavity estimates and displacement convexity.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 50 条
  • [1] Existence and uniqueness of optimal transport maps
    Cavalletti, Fabio
    Huesmann, Martin
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (06): : 1367 - 1377
  • [2] EXISTENCE AND UNIQUENESS OF OPTIMAL TRANSPORT MAPS OBTAINED BY THE SECONDARY VARIATIONAL METHOD
    Chen, Ping
    Liu, Hai-Rong
    Yang, Xiao-Ping
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2021, 312 (01) : 75 - 102
  • [3] REGULARITY OF OPTIMAL TRANSPORT MAPS
    Figalli, Alessio
    [J]. ASTERISQUE, 2010, (332) : 341 - 368
  • [4] Existence and uniqueness of optimal maps on Alexandrov spaces
    Bertrand, Jerome
    [J]. ADVANCES IN MATHEMATICS, 2008, 219 (03) : 838 - 851
  • [5] PARTIAL REGULARITY FOR OPTIMAL TRANSPORT MAPS
    De Philippis, Guido
    Figalli, Alessio
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121): : 81 - 112
  • [6] Partial regularity for optimal transport maps
    Guido De Philippis
    Alessio Figalli
    [J]. Publications mathématiques de l'IHÉS, 2015, 121 : 81 - 112
  • [7] Transport Equations with Fractal Noise - Existence, Uniqueness and Regularity of the Solution
    Issoglio, Elena
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2013, 32 (01): : 37 - 53
  • [8] Sharp boundary ε-regularity of optimal transport maps
    Miura, Tatsuya
    Otto, Felix
    [J]. ADVANCES IN MATHEMATICS, 2021, 381
  • [9] Regularity of optimal transport maps and partial differential inclusions
    Ambrosio, Luigi
    De Philippis, Guido
    Kirchheim, Bernd
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (03) : 311 - 336
  • [10] Regularity of optimal transport maps on multiple products of spheres
    Figalli, Alessio
    Kim, Young-Heon
    McCann, Robert J.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (04) : 1131 - 1166