Revealing the Superiority of Fast Ion Conductor in Composite Electrolyte for Dendrite-Free Lithium-Metal Batteries

被引:25
|
作者
Chen, Hui [1 ]
Zhou, Chun-Jiao [1 ]
Dong, Xin-Rong [1 ]
Yan, Min [2 ]
Liang, Jia-Yan [2 ]
Xin, Sen [2 ,3 ]
Wu, Xiong-Wei [1 ,4 ]
Guo, Yu-Guo [2 ,3 ]
Zeng, Xian-Xiang [1 ]
机构
[1] Hunan Agr Univ, Sch Chem & Mat Sci, Changsha 410128, Hunan, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci BNLMS, CAS Key Lab Mol Nanostruct & Nanotechnol,CAS Res, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci UCAS, Beijing 100049, Peoples R China
[4] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
lithium-metal batteries; composite electrolytes; fast ion conductor; dendrite free; ion transfer pathway; CERAMIC-IN-POLYMER; SOLID-STATE; HIGH-VOLTAGE; GROWTH; SUPPRESSION; INTERFACES; STABILITY; TRANSPORT; MEMBRANE; NANORODS;
D O I
10.1021/acsami.1c04115
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Composite electrolytes composed of a nanoceramic and polymer have been widely studied because of their high ionic conductivity, good Li-ion transference number, and excellent machinability, whereas the intrinsic reason for the improvement of performance is ambiguous. Herein, we have designed a functional polymer skeleton with different types of nanofiller to reveal the superiority of fast ion conductors in composite electrolyte. Three types of ceramics with different dielectric constants and Li-ion transfer ability were selected to prepare composite electrolytes, the composition, structure, and electrochemical performances of which were systematically investigated. It was found that the addition of fast ion conductive ceramics could provide a high Li-ion transference ability and decreased diffusion barrier because the additional pathways existed in the ceramic, which are revealed by experiment and density functional theory calculations. Benefiting from the superiority of fast ion conductor, Li-metal batteries with this advanced composite electrolyte exhibit an impressive cycling stability and enable a dendrite-free Li surface after cycling. Our work enriches the understanding of the function of fast ion conductors in composite electrolyte and guides the design for other high-performance composite electrolytes in rechargeable solid batteries.
引用
收藏
页码:22978 / 22986
页数:9
相关论文
共 50 条
  • [1] A Dendrite-Free Lithium/Carbon Nanotube Hybrid for Lithium-Metal Batteries
    Wang, Zhi Yong
    Lu, Zhong Xu
    Guo, Wei
    Luo, Qin
    Yin, Yan Hong
    Liu, Xian Bin
    Li, Ye Sheng
    Xia, Bao Yu
    Wu, Zi Ping
    ADVANCED MATERIALS, 2021, 33 (04)
  • [2] An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode
    Yan, Chong
    Cheng, Xin-Bing
    Yao, Yu-Xing
    Shen, Xin
    Li, Bo-Quan
    Li, Wen-Jun
    Zhang, Rui
    Huang, Jia-Qi
    Li, Hong
    Zhang, Qiang
    ADVANCED MATERIALS, 2018, 30 (45)
  • [3] A Self-Standing Flexible Gel Polymer Electrolyte for Dendrite-Free Lithium-Metal Batteries
    George, Sweta Mariam
    Sampath, S.
    Bhattacharyya, Aninda J.
    BATTERIES & SUPERCAPS, 2022, 5 (11)
  • [4] A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries
    Rongrong Miao
    Jun Yang
    Zhixin Xu
    Jiulin Wang
    Yanna Nuli
    Limin Sun
    Scientific Reports, 6
  • [5] A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries
    Miao, Rongrong
    Yang, Jun
    Xu, Zhixin
    Wang, Jiulin
    Nuli, Yanna
    Sun, Limin
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Multifunctional Janus Separators for Safer and Dendrite-Free Lithium-Metal Batteries
    Callegari, Daniele
    Davino, Stefania
    Parmigiani, Miriam
    Llamas, Maria M.
    Malavasi, Lorenzo
    Quartarone, Eliana
    BATTERIES & SUPERCAPS, 2023, 6 (12)
  • [7] Antimony-Doped Lithium Phosphate Artificial Solid Electrolyte Interphase for Dendrite-Free Lithium-Metal Batteries
    Gao, Chunhui
    Dong, Qingyuan
    Zhang, Gang
    Fan, Hailin
    Li, Huangxu
    Hong, Bo
    Lai, Yanqing
    CHEMELECTROCHEM, 2019, 6 (04) : 1134 - 1138
  • [8] A high strength hybrid separator with fast ionic conductor for dendrite-free lithium metal batteries
    Mao, Yuqiong
    Sun, Wang
    Qiao, Yaoxuan
    Liu, Xin
    Xu, Chunming
    Fang, Li
    Hou, Wenshuo
    Wang, Zhenhua
    Sun, Kening
    CHEMICAL ENGINEERING JOURNAL, 2021, 416
  • [9] Interlayered Dendrite-Free Lithium Plating for High-Performance Lithium-Metal Batteries
    Xu, Ying
    Li, Tao
    Wang, Liping
    Kang, Yijin
    ADVANCED MATERIALS, 2019, 31 (29)
  • [10] Enhanced cycleability and dendrite-free lithium deposition by addition of sodium ion in electrolyte for lithium metal batteries
    Xu, Qian
    Yang, Yifu
    Shao, Huixia
    ELECTROCHIMICA ACTA, 2018, 271 : 617 - 623