THE GROUP OF INVERTIBLE ELEMENTS OF A REAL BANACH ALGEBRA

被引:0
|
作者
Kulkarni, S. H. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Madras 600036, Tamil Nadu, India
来源
HOUSTON JOURNAL OF MATHEMATICS | 2014年 / 40卷 / 03期
关键词
Real Banach algebra; invertible element; quotient group; spectrum;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following result is proved: Let A be a commutative real Banach algebra with unit 1. Let G denote the group of invertible elements of A and let G(1) be the connected component of G containing 1. If the quotient group G/G(1) contains an element of finite order other than G(1), then the order of such an element must be 2. If the group G/G(1) is of finite order, then its order must be 2(n) for some nonnegative integer n.
引用
收藏
页码:833 / 836
页数:4
相关论文
共 50 条