Beta seasonal autoregressive moving average models

被引:19
|
作者
Bayer, Fabio M. [1 ,2 ]
Cintra, Renato J. [3 ]
Cribari-Neto, Francisco [3 ]
机构
[1] Univ Fed Santa Maria, Dept Estatist, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Fed Santa Maria, LACESM, BR-97105900 Santa Maria, RS, Brazil
[3] Univ Fed Pernambuco, Dept Estatist, Recife, PE, Brazil
关键词
Beta ARMA; beta distribution; forecasts; rates and proportions; seasonal time series; seasonality; PROBABILITY DENSITY-FUNCTION; MARKOV REGRESSION-MODELS; TIME-SERIES MODELS; STATISTICAL-MODEL; LIKELIHOOD; SELECTION; INFORMATION; INFERENCE; CRITERIA; TESTS;
D O I
10.1080/00949655.2018.1491974
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we introduce the class of beta seasonal autoregressive moving average (SARMA) models for modelling and forecasting time series data that assume values in the standard unit interval. It generalizes the class of beta autoregressive moving average models [Rocha AV and Cribari-Neto F. Beta autoregressive moving average models. Test. 2009;18(3):529-545] by incorporating seasonal dynamics to the model dynamic structure. Besides introducing the new class of models, we develop parameter estimation, hypothesis testing inference, and diagnostic analysis tools. We also discuss out-of-sample forecasting. In particular, we provide closed-form expressions for the conditional score vector and for the conditional Fisher information matrix. We also evaluate the finite sample performances of conditional maximum likelihood estimators and white noise tests using Monte Carlo simulations. An empirical application is presented and discussed.
引用
收藏
页码:2961 / 2981
页数:21
相关论文
共 50 条
  • [1] Beta autoregressive moving average models
    Andréa V. Rocha
    Francisco Cribari-Neto
    [J]. TEST, 2009, 18 : 529 - 545
  • [2] Beta autoregressive moving average models
    Rocha, Andrea V.
    Cribari-Neto, Francisco
    [J]. TEST, 2009, 18 (03) : 529 - 545
  • [3] Erratum to: Beta autoregressive moving average models
    Andréa V. Rocha
    Francisco Cribari-Neto
    [J]. TEST, 2017, 26 : 451 - 459
  • [4] Inflated beta autoregressive moving average models
    Bayer, Fabio M.
    Pumi, Guilherme
    Pereira, Tarciana Liberal
    Souza, Tatiene C.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [5] Inflated beta autoregressive moving average models
    Fábio M. Bayer
    Guilherme Pumi
    Tarciana Liberal Pereira
    Tatiene C. Souza
    [J]. Computational and Applied Mathematics, 2023, 42
  • [6] Beta autoregressive fractionally integrated moving average models
    Pumi, Guilherme
    Valk, Marcio
    Bisognin, Cleber
    Bayer, Fabio Mariano
    Prass, Taiane Schaedler
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 200 : 196 - 212
  • [7] Representation of Multiplicative Seasonal Vector Autoregressive Moving Average Models
    Yozgatligil, Ceylan
    Wei, William W. S.
    [J]. AMERICAN STATISTICIAN, 2009, 63 (04): : 328 - 334
  • [8] Generalized autoregressive moving average models
    Benjamin, MA
    Rigby, RA
    Stasinopoulos, DM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (461) : 214 - 223
  • [9] A note on the information matrix for multiplicative seasonal autoregressive moving-average models
    Godolphin, E. J.
    Godolphin, J. D.
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (05) : 783 - 791
  • [10] DUALITY AND OTHER PROPERTIES OF MULTIPLICATIVE SEASONAL AUTOREGRESSIVE-MOVING AVERAGE MODELS
    MCLEOD, AI
    [J]. BIOMETRIKA, 1984, 71 (01) : 207 - 211