共 50 条
Estimating the negative binomial dispersion parameter with highly stratified surveys
被引:4
|作者:
Cadigan, N. G.
[1
]
Tobin, Jared
[2
]
机构:
[1] Fisheries & Oceans Canada, Sci Branch, NW Atlantic Fisheries Ctr, St John, NF A1C 5X1, Canada
[2] Mem Univ, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金:
加拿大自然科学与工程研究理事会;
关键词:
Bias correction;
Bottom-trawl surveys;
Maximum likelihood bias;
Optimal quadratic estimating equation;
Pseudo-likelihood;
Quasi-likelihood;
Stratified random sampling;
MAXIMUM-LIKELIHOOD-ESTIMATION;
EXTENDED QUASI-LIKELIHOOD;
LINEAR-MODEL;
COUNT DATA;
ABUNDANCE;
D O I:
10.1016/j.jspi.2010.02.014
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We investigate several estimators of the negative binomial (NB) dispersion parameter for highly stratified count data for which the statistical model has a separate mean parameter for each stratum. If the number of samples per stratum is small then the model is highly parameterized and the maximum likelihood estimator (MLE) of the NB dispersion parameter can be biased and inefficient. Some of the estimators we investigate include adjustments for the number of mean parameters to reduce bias. We extend other estimators that were developed for the iid case, to reduce bias when there are many mean parameters. We demonstrate using simulations that an adjusted double extended quasi-likelihood estimator we proposed gives much improved estimates compared to the MLE. Adjusted extended quasi-likelihood and adjusted maximum likelihood estimators also give much-improved results. We illustrate the various estimators with stratified random bottom trawl survey data for cod (Gadus morhua) off the south coast of Newfoundland, Canada. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2138 / 2147
页数:10
相关论文