A Latent Ability Model for Count Data and Application to Processing Speed

被引:14
|
作者
Doebler, Anna [1 ]
Doebler, Philipp [1 ]
Holling, Heinz [1 ]
机构
[1] Univ Munster, D-48149 Munster, Germany
关键词
count data; Rasch Poisson counts model; item characteristic curve; processing speed; MULTIPLICATIVE POISSON MODEL; ALGORITHM; ACCURACY;
D O I
10.1177/0146621614543513
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
A new family of item response theory models for count data, based on item characteristic curves (ICCs) of binary models, is presented. These models assume a Poisson distribution for the observed scores where the mean is given by the product of a speed parameter and an ICC, for example, the curve of the one- or two-parameter logistic model. Joint and marginal maximum likelihood parameter estimations are discussed and the proposed procedures are evaluated by computer simulation. As an application, item level data from a test measuring processing speed are analyzed and item fit and test information are explored.
引用
收藏
页码:587 / 598
页数:12
相关论文
共 50 条
  • [1] Latent class model with two latent variables for analysis of count data
    Yamaguchi, Kazunori
    Sakurai, Naoko
    Watanabe, Michiko
    [J]. COMPSTAT 2006: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2006, : 395 - +
  • [2] Understanding Ability and Reliability Differences Measured with Count Items: The Distributional Regression Test Model and the Count Latent Regression Model
    Beisemann, Marie
    Forthmann, Boris
    Doebler, Philipp
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2024, 59 (03) : 502 - 522
  • [3] A latent process regression model for spatially correlated count data
    McShane, LM
    Albert, PS
    Palmatier, MA
    [J]. BIOMETRICS, 1997, 53 (02) : 698 - 706
  • [4] A LATENT CLASS POISSON REGRESSION-MODEL FOR HETEROGENEOUS COUNT DATA
    WEDEL, M
    DESARBO, WS
    BULT, JR
    RAMASWAMY, V
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 1993, 8 (04) : 397 - 411
  • [5] A Bayesian latent process spatiotemporal regression model for areal count data
    Utazi, C. Edson
    Afuecheta, Emmanuel O.
    Nnanatu, C. Christopher
    [J]. SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2018, 25 : 25 - 37
  • [6] A conditional count model for repeated count data and its application to GEE approach
    Rajib Dey
    M. Ataharul Islam
    [J]. Statistical Papers, 2017, 58 : 485 - 504
  • [7] A conditional count model for repeated count data and its application to GEE approach
    Dey, Rajib
    Islam, M. Ataharul
    [J]. STATISTICAL PAPERS, 2017, 58 (02) : 485 - 504
  • [8] A new count data model with application in genetics and ecology
    Rashid, Adil
    Ahmad, Zahoor
    Jan, T. R.
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2016, 9 (01) : 213 - 226
  • [9] Latent feature regression for multivariate count data
    Klami, Arto
    Tripathi, Abhishek
    Sirola, Johannes
    Vare, Lauri
    Roulland, Frederic
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 462 - 470
  • [10] TRANSLATION SPEED AND INFORMATION PROCESSING ABILITY
    GEKOSKI, WL
    [J]. CANADIAN PSYCHOLOGIST-PSYCHOLOGIE CANADIENNE, 1970, 11 (02): : 185 - &