Hydrostatic Simulation of Earth's Atmospheric Gas Using Multi-particle Collision Dynamics

被引:0
|
作者
Pattisahusiwa, Asis [1 ]
Purcion, Acep [1 ]
Viridi, Sparisoma [2 ]
机构
[1] Inst Teknol Bandung, Phys Earth & Complex Syst Res Div, Bandung, Indonesia
[2] Inst Teknol Bandung, Nucl Phys & Biophys Res Div, Dept Phys, Bandung, Indonesia
关键词
D O I
10.1088/1755-1315/29/1/012006
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Multi-particle collision dynamics (MPCD) is a mesoscopic simulation method to simulate fluid particle-like flows. MPCD has been widely used to simulate various problems in condensed matter. In this study, hydrostatic behavior of gas in the Earth's atmospheric layer is simulated by using MPCD method. The simulation is carried out by assuming the system under ideal state and is affected only by gravitational force. Gas particles are homogeneous and placed in 2D box. Interaction of the particles with the box is applied through implementation of boundary conditions (BC). Periodic BC is applied on the left and the right side, specular reflection on the top side, while bounce-back on the bottom side. Simulation program is executed in Arch Linux and running in notebook with processor Intel i5 @2700 MHz with 10 GB DDR3 RAM. The results show behaviors of the particles obey kinetic theory for ideal gas when gravitational acceleration value is proportional to the particle mass. Density distribution as a function of altitude also meets atmosphere's hydrostatic theory.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Simulation of tethered oligomers in nanochannels using multi-particle collision dynamics
    Raghu, Riyad Chetram
    Schofield, Jeremy
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (01):
  • [2] Entangled nematic disclinations using multi-particle collision dynamics
    Head, Louise C.
    Fosado, Yair A. G.
    Marenduzzo, Davide
    Shendruk, Tyler N.
    SOFT MATTER, 2024, 20 (36) : 7157 - 7173
  • [3] Flow simulations with multi-particle collision dynamics
    E. De Angelis
    M. Chinappi
    G. Graziani
    Meccanica, 2012, 47 : 2069 - 2077
  • [4] Inertial microfluidics with multi-particle collision dynamics
    Prohm, C.
    Gierlak, M.
    Stark, H.
    EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (08):
  • [5] Inertial microfluidics with multi-particle collision dynamics
    C. Prohm
    M. Gierlak
    H. Stark
    The European Physical Journal E, 2012, 35
  • [6] Flow simulations with multi-particle collision dynamics
    De Angelis, E.
    Chinappi, M.
    Graziani, G.
    MECCANICA, 2012, 47 (08) : 2069 - 2077
  • [7] Feasibility of the multi-particle collision dynamics method as a simulation technique for a magnetic particle suspension
    Satoh, Akira
    MOLECULAR SIMULATION, 2020, 46 (03) : 213 - 223
  • [8] Modeling the locomotion of the African trypanosome using multi-particle collision dynamics
    Babu, Sujin B.
    Stark, Holger
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [9] Multi-particle collision dynamics algorithm for nematic fluids
    Shendruk, Tyler N.
    Yeomans, Julia M.
    SOFT MATTER, 2015, 11 (25) : 5101 - 5110
  • [10] Numerical study of the flow around a cylinder using multi-particle collision dynamics
    Lamura, A
    Gompper, G
    EUROPEAN PHYSICAL JOURNAL E, 2002, 9 (05): : 477 - 485