Performance of radial-basis function networks for direction of arrival estimation with antenna arrays

被引:118
|
作者
ElZooghby, AH
Christodoulou, CG
Georgiopoulos, M
机构
[1] Electrical and Computer Engineering Department, University of Central Florida, Orlando
关键词
antenna arrays; direction of arrival estimation;
D O I
10.1109/8.650072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of direction of arrival (DOA) estimation of mobile users using linear antenna arrays is addressed, To reduce the computational complexity of superresolution algorithms, e.g. multiple signal classification (MUSIC), the DOA problem is approached as a mapping which can be modeled using a suitable artificial neural network trained with input output pairs, This paper discusses the application of a three-layer radial-basis function neural network (RBFNN), which can learn multiple source-direction findings of a six-element array, The network weights are modified using the normalized cumulative delta rule, The performance of this network is compared to that of the MUSIC algorithm for both uncorrelated and correlated signals, It Is also shown that the RBFNN substantially reduced the CPU time for the DOA estimation computations.
引用
收藏
页码:1611 / 1617
页数:7
相关论文
共 50 条
  • [1] On the Performance of Random Antenna Arrays for Direction of Arrival Estimation
    Yaqoob, Muhammad Atif
    Mannesson, Anders
    Bernhardsson, Bo
    Butt, Naveed R.
    Tufvesson, Fredrik
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC), 2014, : 193 - 199
  • [2] Direction of Arrival (DOA) Estimation Algorithm Based on the Radial Basis Function Neural Networks
    He, Hong
    Li, Tao
    Yang, Tong
    He, Lin
    [J]. ADVANCES IN MULTIMEDIA, SOFTWARE ENGINEERING AND COMPUTING, VOL 1, 2011, 128 : 389 - +
  • [3] On the Kernel Widths in Radial-Basis Function Networks
    Nabil Benoudjit
    Michel Verleysen
    [J]. Neural Processing Letters, 2003, 18 : 139 - 154
  • [4] On the kernel widths in radial-basis function networks
    Benoudjit, N
    Verleysen, M
    [J]. NEURAL PROCESSING LETTERS, 2003, 18 (02) : 139 - 154
  • [5] Direction of Arrival Estimation Performance for Compact Antenna Arrays with Adjustable Size
    Caizzone, S.
    Elmarissi, W.
    Marinho, M. A. M.
    Antreich, F.
    [J]. 2017 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2017, : 662 - 665
  • [6] Direction of Arrival Estimation Applied to Antenna Arrays using Convolutional Neural Networks
    Kokkinis, Giorgos
    Zaharis, Zaharias D.
    Lazaridis, Pavlos, I
    Kantartzis, Nikolaos, V
    [J]. 2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,
  • [7] Decision trees can initialize radial-basis function networks
    Kubat, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05): : 813 - 821
  • [8] Relaxed conditions for radial-basis function networks to be universal approximators
    Liao, Y
    Fang, SC
    Nuttle, HLW
    [J]. NEURAL NETWORKS, 2003, 16 (07) : 1019 - 1028
  • [9] Determination of multiple direction of arrival in antennas arrays with radial basis functions
    Dourado Junior, Osmar de Araujo
    Doria Neto, Adriao Duarte
    da Mata, Wilson
    [J]. NEUROCOMPUTING, 2006, 70 (1-3) : 55 - 61
  • [10] Suitability of Compact Antenna Arrays for Direction-of-Arrival Estimation
    Pralon, Mariana G.
    Del Galdo, Giovanni
    Landmann, Markus
    Hein, Matthias A.
    Thoma, Reiner S.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (12) : 7244 - 7256