Fluctuating metrics in one-dimensional manifolds

被引:2
|
作者
Mendoza, R [1 ]
Gomez, P [1 ]
Moraes, F [1 ]
机构
[1] UNIV FED PERNAMBUCO,DEPT FIS,BR-50670901 RECIFE,PE,BRAZIL
关键词
D O I
10.1063/1.531942
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we address the statistical mechanics of fluctuating metrics in two, simple, one-dimensional, manifolds: the unit interval and the unit circle. Faddeev-Popov and zeta-function regularization are used to compute explicitly the partition function without the need of any extra fields in the case of the interval. The addition of bosonic fields to the fluctuating metric background is necessary in order to accomplish complete regularization in the case of the circle. (C) 1997 American Institute of Physics.
引用
收藏
页码:5293 / 5300
页数:8
相关论文
共 50 条
  • [1] RANDOM MOTION IN A ONE-DIMENSIONAL FLUCTUATING MEDIUM
    FRANKOWICZ, M
    GAVEAU, B
    MOREAU, M
    PHYSICS LETTERS A, 1991, 152 (5-6) : 262 - 265
  • [2] Generic fibre product of one-dimensional manifolds
    Adamus, J
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 247 - 255
  • [3] One-dimensional sectional curvature of Riemannian manifolds
    Rodionov, ED
    Slavskii, VV
    DOKLADY MATHEMATICS, 2002, 66 (03) : 376 - 379
  • [4] RADIATION TRANSFER IN ONE-DIMENSIONAL NONSTATIONARY FLUCTUATING MEDIUM
    APRESYAN, L
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1985, 28 (07): : 880 - 888
  • [5] Disorder effects in fluctuating one-dimensional interacting systems
    London, U
    Giamarchi, T
    Orgad, D
    PHYSICAL REVIEW B, 2006, 73 (13):
  • [6] TRAVELING WAVE PROPAGATION IN A ONE-DIMENSIONAL FLUCTUATING MEDIUM
    Perez-Munuzuri, V.
    Gomez-Gesteira, M.
    Perez-Villar, V.
    Chua, L. O.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (01): : 211 - 215
  • [7] Quantum fluctuating theory for one-dimensional shock waves
    Urilyon, Andrew
    Scopa, Stefano
    Del Vecchio, Giuseppe Del Vecchio
    De Nardis, Jacopo
    PHYSICAL REVIEW B, 2025, 111 (04)
  • [8] Transport in a one-dimensional chain with random fluctuating energies
    Menashe, D
    Laikhtman, B
    PHYSICAL REVIEW B, 2000, 62 (20) : 13430 - 13439
  • [9] On strongly pseudoconvex manifolds with one-dimensional exceptional set
    E. Ballico
    The Journal of Geometric Analysis, 1999, 9 (2): : 175 - 178
  • [10] Families of stable manifolds for one-dimensional parabolic equations
    Kamaev, DA
    MATHEMATICAL NOTES, 1996, 60 (1-2) : 8 - 17