Optically addressable universal holonomic quantum gates on diamond spins

被引:6
|
作者
Sekiguchi, Yuhei [1 ,2 ]
Matsushita, Kazuki [3 ]
Kawasaki, Yoshiki [3 ]
Kosaka, Hideo [1 ,2 ,3 ]
机构
[1] Yokohama Natl Univ, Inst Adv Sci, Yokohama, Kanagawa, Japan
[2] Yokohama Natl Univ, Quantum Informat Res Ctr, Yokohama, Kanagawa, Japan
[3] Yokohama Natl Univ, Grad Sch Engn Sci, Dept Phys, Yokohama, Kanagawa, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
GEOMETRIC SPIN; ENTANGLEMENT; MANIPULATION; RESOLUTION; COHERENCE; DYNAMICS; PHOTON; PHASE;
D O I
10.1038/s41566-022-01038-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microwave-driven holonomic quantum gates on an optically selected electron spin in a nitrogen-vacancy centre in diamond are demonstrated. Optically addressable entanglement is generated between the electron and adjacent nitrogen nuclear spin. The ability to individually control the numerous spins in a solid-state crystal is a promising technology for the development of large-scale quantum processors and memories. A localized laser field offers spatial selectivity for electron spin manipulation through spin-obit coupling, but it has been difficult to simultaneously achieve precise and universal manipulation. Here, we demonstrate microwave-driven holonomic quantum gates on an optically selected electron spin in a nitrogen-vacancy centre in diamond. The electron spin is precisely manipulated with global microwaves tuned to the frequency shift induced by the local optical Stark effect. We show the universality of the operations, including state initialization, preparation, readout and echo. We also generate optically addressable entanglement between the electron and adjacent nitrogen nuclear spin. High-fidelity operations are achieved by applying amplitude-alternating pulses, which are tolerant to fluctuations in microwave intensity and detuning. These techniques enable site-selective quantum teleportation transfer from a photon to a nuclear spin memory, paving the way for the realization of distributed quantum computers and the quantum Internet with large-scale quantum storage.
引用
收藏
页码:662 / +
页数:12
相关论文
共 50 条
  • [1] Optically addressable universal holonomic quantum gates on diamond spins
    Yuhei Sekiguchi
    Kazuki Matsushita
    Yoshiki Kawasaki
    Hideo Kosaka
    Nature Photonics, 2022, 16 : 662 - 666
  • [2] Exact solutions for universal holonomic quantum gates
    Karimipour, V
    Majd, N
    PHYSICAL REVIEW A, 2004, 70 (01): : 012320 - 1
  • [3] Optically addressable molecular spins for quantum information processing
    Bayliss, S. L.
    Laorenza, D. W.
    Mintun, P. J.
    Kovos, B. D.
    Freedman, D. E.
    Awschalom, D. D.
    SCIENCE, 2020, 370 (6522) : 1309 - +
  • [4] Universal quantum computation by holonomic and nonlocal gates with imperfections
    Ellinas, D
    Pachos, J
    PHYSICAL REVIEW A, 2001, 64 (02):
  • [5] Universal quantum computation by holonomic and nonlocal gates with imperfections
    Ellinas, D. (ellinas@science.tuc.gr), 2001, American Institute of Physics Inc. (64):
  • [6] Implementing universal nonadiabatic holonomic quantum gates with transmons
    Hong, Zhuo-Ping
    Liu, Bao-Jie
    Cai, Jia-Qi
    Zhang, Xin-Ding
    Hu, Yong
    Wang, Z. D.
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [7] Universal quantum gates between distant quantum dot spins
    Zeng, Hao-Sheng
    Wang, Qiong
    Fang, Xi-Ming
    Kuang, Le-Man
    PHYSICS LETTERS A, 2010, 374 (21) : 2129 - 2132
  • [8] Universal quantum gates by nonadiabatic holonomic evolution for the surface electron
    Wang, Jun
    He, Wan-Ting
    Wang, Hai-Bo
    Ai, Qing
    FRONTIERS IN PHYSICS, 2024, 12
  • [9] Addressable Quantum Gates
    Arrighi, Pablo
    Cedzich, Christopher
    Costes, Marin
    Remond, Ulysse
    Valiron, Benoit
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2023, 4 (03):
  • [10] Realizing quantum gates with optically addressable 171Yb+ion qudits
    Aksenov, M. A.
    V. Zalivako, I.
    Semerikov, I. A.
    Borisenko, A. S.
    V. Semenin, N.
    Sidorov, P. L.
    Fedorov, A. K.
    Khabarova, K. Yu.
    Kolachevsky, N. N.
    PHYSICAL REVIEW A, 2023, 107 (05)