All-Atom Molecular Dynamics Simulations on a Single Chain of PET and PEV Polymers

被引:9
|
作者
Sangkhawasi, Mattanun [1 ]
Remsungnen, Tawun [2 ]
Vangnai, Alisa S. [3 ,4 ]
Poo-arporn, Rungtiva P. [5 ]
Rungrotmongkol, Thanyada [3 ,4 ,6 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Program Biotechnol, Bangkok 10330, Thailand
[2] Khon Kaen Univ, Fac Interdisciplinary Studies, Nong Khai Campus, Nong Khai 43000, Thailand
[3] Chulalongkorn Univ, Fac Sci, Ctr Excellence Biocatalyst & Sustainable Biotechn, Bangkok 10330, Thailand
[4] Chulalongkorn Univ, Fac Sci, Dept Biochem, Bangkok 10330, Thailand
[5] King Mongkuts Univ Technol Thonburi, Fac Engn, Biol Engn Program, Bangkok 10140, Thailand
[6] Chulalongkorn Univ, Grad Sch, Program Bioinformat & Computat Biol, Bangkok 10330, Thailand
关键词
polyethylene terephthalate; polyethylene vanillate; bio-based polymer; glass transition temperature; molecular dynamics simulation; GLASS-TRANSITION TEMPERATURE; VANILLIC ACID; FORCE-FIELD; POLYESTERS;
D O I
10.3390/polym14061161
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polyethylene vanillic (PEV), a bio-based material, has mechanical and thermal properties similar to polyethylene terephthalate (PET), the most common polymer used in industries. The present study aimed to investigate and compare their structural dynamics and physical data using a computational approach. The simple model of a single-chain polymer containing 100 repeating units was performed by all-atom molecular dynamics (MD) simulations with refined OPLS-AA force field parameters. As a result, the flexibility of the PEV structure was greater than that of PET. PET and PEV polymers had the predicted glass transition temperature T-g values of approximately 345 K and 353 K, respectively. PEV showed a slightly higher T-g than PET, consistent with current experimental evidence.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] All-Atom Molecular Dynamics Simulations of Whole Viruses
    Tarasova, Elvira
    Nerukh, Dmitry
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (19): : 5805 - 5809
  • [2] All-atom molecular dynamics simulation of HPMA polymers
    Meleshko, Glib
    Kulhavy, Jiri
    Paul, Alison
    Willock, David J.
    Platts, James A.
    [J]. RSC ADVANCES, 2014, 4 (14) : 7003 - 7012
  • [3] Reaching biological timescales with all-atom molecular dynamics simulations
    Zwier, Matthew C.
    Chong, Lillian T.
    [J]. CURRENT OPINION IN PHARMACOLOGY, 2010, 10 (06) : 745 - 752
  • [4] All-atom molecular dynamics simulations of polymer and polyelectrolyte brushes
    Ishraaq, Raashiq
    Das, Siddhartha
    [J]. CHEMICAL COMMUNICATIONS, 2024, 60 (48) : 6093 - 6129
  • [5] Titratable water model for all-atom molecular dynamics simulations
    Shen, Jana
    Chen, Wei
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [6] Molecular dynamics simulations of single polyethylene chain folding during fast quenching using all-atom and united-atom models
    Shi, Jingfu
    Zhou, Jianqiu
    Liu, Lei
    Miao, Changqing
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (38) : 24995 - 25004
  • [7] Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics
    Erban, Radek
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2186):
  • [8] The folding pathway of ubiquitin from all-atom molecular dynamics simulations
    Marianayagam, NJ
    Jackson, SE
    [J]. BIOPHYSICAL CHEMISTRY, 2004, 111 (02) : 159 - 171
  • [9] All-Atom Molecular Dynamics Simulations of Communication Between Nanochannel Arrays
    Manikandan, D.
    Nayak, Pramoda K. K.
    [J]. ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 11640 - 11650
  • [10] A computational study of cellulose regeneration: All-atom molecular dynamics simulations
    Heasman, Patrick
    Mehandzhiyski, Aleksandar Y.
    Ghosh, Sarbani
    Zozoulenko, Igor
    [J]. CARBOHYDRATE POLYMERS, 2023, 311