Generalized random walk algorithm for the numerical modeling of complex diffusion processes

被引:46
|
作者
Vamos, C
Suciu, N
Vereecken, H
机构
[1] Romanian Acad, T Popoviciu Inst Numer Anal, Cluj Napoca 3400 1, Romania
[2] Forschungszentrum Julich GMBH, Inst Agrosphare ICG IV, D-52425 Julich, Germany
关键词
diffusion random walk; groundwater; contaminant transport;
D O I
10.1016/S0021-9991(03)00073-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A generalized form of the random walk algorithm to simulate diffusion processes is introduced. Unlike the usual approach, at a given time all the particles from a grid node are simultaneously scattered using the Bernoulli repartition. This procedure saves memory and computing time and no restrictions are imposed for the maximum number of particles to be used in simulations. We prove that for simple diffusion the method generalizes the finite difference scheme and gives the same precision for large enough number of particles. As an example, simulations of diffusion in random velocity field are performed and the main features of the stochastic mathematical model are numerically tested. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:527 / 544
页数:18
相关论文
共 50 条
  • [1] Relativistic diffusion processes and random walk models
    Dunkel, Joern
    Talkner, Peter
    Haenggi, Peter
    PHYSICAL REVIEW D, 2007, 75 (04):
  • [2] Numerical Evaluation of the Random Walk Search Algorithm
    Biernacki, Arkadiusz
    MAN-MACHINE INTERACTIONS, 2009, 59 : 533 - 540
  • [3] Generalized diffusion and random search processes
    Zhou, Tian
    Trajanovski, Pece
    Xu, Pengbo
    Deng, Weihua
    Sandev, Trifce
    Kocarev, Ljupco
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (09):
  • [5] DIFFUSION LIMITS OF THE RANDOM WALK METROPOLIS ALGORITHM IN HIGH DIMENSIONS
    Mattingly, Jonathan C.
    Pillai, Natesh S.
    Stuart, Andrew M.
    ANNALS OF APPLIED PROBABILITY, 2012, 22 (03): : 881 - 930
  • [6] Diffusion limit for the random walk Metropolis algorithm out of stationarity
    Kuntz, Juan
    Ottobre, Michela
    Stuart, Andrew M.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (03): : 1599 - 1648
  • [7] Continuous time random walk and diffusion with generalized fractional Poisson process
    Michelitsch, Thomas M.
    Riascos, Alejandro P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545
  • [8] Fractional diffusion processes: Probability distributions and continuous time random walk
    Gorenflo, R
    Mainardi, F
    PROCESSES WITH LONG-RANGE CORRELATIONS: THEORY AND APPLICATIONS, 2003, 621 : 148 - 166
  • [9] GENERALIZED RANDOM-WALK IN A RANDOM ENVIRONMENT
    KALIKOW, SA
    ANNALS OF PROBABILITY, 1981, 9 (05): : 753 - 768
  • [10] Distributed Spectral Decomposition in Networks by Complex Diffusion and Quantum Random Walk
    Avrachenkov, Konstantin
    Jacquet, Philippe
    Sreedharan, Jithin K.
    IEEE INFOCOM 2016 - THE 35TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS, 2016,