STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR λ-STRICTLY PSEUDO-CONTRACTIVE MAPPINGS IN HILBERT SPACES

被引:0
|
作者
Li, Mengqin [1 ]
Yao, Yonghong [1 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R China
关键词
lambda-strictly pseudo-contractive mapping; fixed point; iterative algorithm; strong convergence; Hilbert space; VISCOSITY APPROXIMATION METHODS; COMMON FIXED-POINTS; NONEXPANSIVE-MAPPINGS; BANACH-SPACES; FINITE FAMILY; NONLINEAR OPERATORS; THEOREMS; SEQUENCES; WEAK;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a real Hilbert space. Let T : H -> H be a lambda-strictly pseudocontractive mapping. Let {alpha(n)} and {beta(n)} be two real sequences in (0,1). For given x(0) is an element of H, let the sequence {x(n)} be generated iteratively by x(n+1) =(1 - alpha(n) - beta(n))x(n) + beta(n)Tx(n), n > 0. Under some mild conditions on parameters {alpha(n)} and {beta(n)}, we prove that the sequence {x(n)} converges strongly to a fixed point o T in Hilbert space.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条