MAP-based image tag recommendation using a visual folksonomy

被引:17
|
作者
Lee, Sihyoung [1 ]
De Neve, Wesley [1 ]
Plataniotis, Konstantinos N. [2 ]
Ro, Yong Man [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Image & Video Syst Lab, Taejon 305701, South Korea
[2] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Multimedia Lab, Toronto, ON M5S 3GA, Canada
关键词
Folksonomy; Image annotation; Tagging; Tag recommendation; ANNOTATION;
D O I
10.1016/j.patrec.2009.12.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Descriptive tags are needed to enable efficient and effective search in vast collections of images. Tag recommendation represents a trade-off between automatic image annotation techniques and manual tagging. In this letter, we formulate image tag recommendation as a maximum a posteriori (MAP) problem, making use of a visual folksonomy. A folksonomy can be seen as a collaboratively created set of metadata for informal social classification. Our experimental results show that the use of a visual folksonomy for image tag recommendation has two significant benefits, compared to a conventional approach using a limited concept vocabulary. First, our tag recommendation technique can make use of an unrestricted and rich concept vocabulary. Second, our approach is able to recommend a higher number of correct tags. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:976 / 982
页数:7
相关论文
共 50 条
  • [1] Tag recommendation based on topic hierarchy of folksonomy
    Xue, Han
    Qin, Bing
    Liu, Ting
    Liu, Shen
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2019, 20 (01) : 49 - 58
  • [2] Tag refinement in an image folksonomy using visual similarity and tag co-occurrence statistics
    Lee, Sihyoung
    De Neve, Wesley
    Ro, Yong Man
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2010, 25 (10) : 761 - 773
  • [3] Keep Querying and Tag on: Collaborative Folksonomy Using Model-Based Recommendation
    Ziesemer, Angelina de C. A.
    de Oliveira, Joao Batista S.
    [J]. COLLABORATION AND TECHNOLOGY, CRIWG 2013, 2013, 8224 : 10 - 17
  • [4] Folksonomy-Based Tag Recommendation for Collaborative Tagging Systems
    Font, Frederic
    Serra, Joan
    Serra, Xavier
    [J]. INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2013, 9 (02) : 1 - 30
  • [5] Folksonomy link prediction based on a tripartite graph for tag recommendation
    Rawashdeh, Majdi
    Kim, Heung-Nam
    Alja'am, Jihad Mohamad
    El Saddik, Abdulmotaleb
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2013, 40 (02) : 307 - 325
  • [6] Folksonomy link prediction based on a tripartite graph for tag recommendation
    Majdi Rawashdeh
    Heung-Nam Kim
    Jihad Mohamad Alja’am
    Abdulmotaleb El Saddik
    [J]. Journal of Intelligent Information Systems, 2013, 40 : 307 - 325
  • [7] Tag recommendation method in folksonomy based on user tagging status
    Hong Yu
    Bing Zhou
    Mingyao Deng
    Feng Hu
    [J]. Journal of Intelligent Information Systems, 2018, 50 : 479 - 500
  • [8] Tag recommendation method in folksonomy based on user tagging status
    Yu, Hong
    Zhou, Bing
    Deng, Mingyao
    Hu, Feng
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2018, 50 (03) : 479 - 500
  • [9] Map-based recommendation of hyperlinked document collections
    Klopotek, Mieczyslaw A.
    Wierzchon, Slawomir T.
    Ciesielski, Krzysztof
    Draminski, Michal
    Czerski, Dariusz
    [J]. E-COMMERCE AND WEB TECHNOLOGIES, PROCEEDINGS, 2006, 4082 : 1 - 10
  • [10] TAG REFINEMENT BASED ON MULTILINGUAL TAG HIERARCHIES EXTRACTED FROM IMAGE FOLKSONOMY
    Hamano, Shota
    Ogawa, Takahiro
    Haseyama, Miki
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1327 - 1331