Robust clustering via mixtures of t factor analyzers with incomplete data

被引:6
|
作者
Wang, Wan-Lun [1 ]
Lin, Tsung-, I [2 ,3 ]
机构
[1] Feng Chia Univ, Grad Inst Stat & Actuarial Sci, Dept Stat, Taichung 40724, Taiwan
[2] Natl Chung Hsing Univ, Inst Stat, Taichung 402, Taiwan
[3] China Med Univ, Dept Publ Hlth, Taichung 404, Taiwan
关键词
Data reduction; Factor analyzer; Information matrix; Mixture models; Multivariate t distribution; Missing data; MAXIMUM-LIKELIHOOD-ESTIMATION; MULTIVARIATE NORMAL-DISTRIBUTION; ECM ALGORITHM; ML ESTIMATION; MODELS; INFERENCE;
D O I
10.1007/s11634-021-00453-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mixtures of t factor analyzers (MtFA) are powerful and widely used tools for robust clustering of high-dimensional data in the presence of outliers. However, the occurrence of missing values may cause analytical intractability and computational complexity when fitting the MtFA model. We explicitly derive the score vector and Hessian matrix of the MtFA model with incomplete data to approximate the information matrix. In this regard, some asymptotic properties can be established under certain regularity conditions. Three expectation-maximization-based algorithms are developed for maximum likelihood estimation of the MtFA model with possibly missing values at random. Practical issues related to the recovery of missing values and clustering of partially observed samples are also investigated. The relevant utility of our methodology is exemplified through the analysis of simulated and real data sets.
引用
收藏
页码:659 / 690
页数:32
相关论文
共 50 条
  • [1] Robust clustering via mixtures of t factor analyzers with incomplete data
    Wan-Lun Wang
    Tsung-I Lin
    [J]. Advances in Data Analysis and Classification, 2022, 16 : 659 - 690
  • [2] Robust clustering of multiply censored data via mixtures of t factor analyzers
    Wan-Lun Wang
    Tsung-I Lin
    [J]. TEST, 2022, 31 : 22 - 53
  • [3] Robust clustering of multiply censored data via mixtures of t factor analyzers
    Wang, Wan-Lun
    Lin, Tsung-, I
    [J]. TEST, 2022, 31 (01) : 22 - 53
  • [4] Model-based clustering via mixtures of unrestricted skew normal factor analyzers with complete and incomplete data
    Wang, Wan-Lun
    Lin, Tsung-, I
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (03): : 787 - 817
  • [5] Model-based clustering via mixtures of unrestricted skew normal factor analyzers with complete and incomplete data
    Wan-Lun Wang
    Tsung-I Lin
    [J]. Statistical Methods & Applications, 2023, 32 : 787 - 817
  • [6] Flexible clustering via extended mixtures of common t-factor analyzers
    Wang, Wan-Lun
    Lin, Tsung-I
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2017, 101 (03) : 227 - 252
  • [7] Flexible clustering via extended mixtures of common t-factor analyzers
    Wan-Lun Wang
    Tsung-I Lin
    [J]. AStA Advances in Statistical Analysis, 2017, 101 : 227 - 252
  • [8] Model-based clustering of censored data via mixtures of factor analyzers
    Wang, Wan-Lun
    Castro, Luis M.
    Lachos, Victor H.
    Lin, Tsung-I
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 140 : 104 - 121
  • [9] Robust, fuzzy, and parsimonious clustering, based on mixtures of Factor Analyzers
    Angel Garcia-Escudero, Luis
    Greselin, Francesca
    Mayo Iscar, Agustin
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 94 : 60 - 75
  • [10] Mixtures of common t-factor analyzers for clustering high-dimensional microarray data
    Baek, Jangsun
    McLachlan, Geoffrey J.
    [J]. BIOINFORMATICS, 2011, 27 (09) : 1269 - 1276