Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multimodel ensemble

被引:27
|
作者
Ferraro, Angus J. [1 ]
Giffiths, Hannah G. [2 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England
[2] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
来源
ENVIRONMENTAL RESEARCH LETTERS | 2016年 / 11卷 / 03期
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
precipitation; radiative forcing; geoengineering; climate engineering; climate modelling; GeoMIP; SOLAR IRRADIANCE REDUCTION; CLIMATE-CHANGE; HYDROLOGICAL CYCLE; MODEL; SENSITIVITY; RADIATION; GENERATION; SCENARIOS; BALANCE; SULFATE;
D O I
10.1088/1748-9326/11/3/034012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The reduction in global-mean precipitation when stratospheric aerosol geoengineering is used to counterbalance global warming from increasing carbon dioxide (CO2) concentrations has been mainly attributed to the temperature-independent effect of CO2 on atmospheric radiative cooling. We demonstrate here that stratospheric sulphate aerosol itself also acts to reduce global-mean precipitation independent of its effects on temperature. The temperature-independent effect of stratospheric aerosol geoenginering on global-mean precipitation is calculated by removing temperature-dependent effects from climate model simulations of the Geoengineering Model Intercomparison Project (GeoMIP). When sulphate aerosol is injected into the stratosphere at a rate of 5Tg SO2 per year the aerosol reduces global-mean precipitation by approximately 0.2 %, though multiple ensemble members are required to separate this effect from internal variability. For comparison, the precipitation reduction from the temperature-independent effect of increasing CO2 concentrations under the RCP4.5 scenario of the future is approximately 0.5 %. The temperature-independent effect of stratospheric sulphate aerosol arises from the aerosol's effect on tropospheric radiative cooling. Radiative transfer calculations show this is mainly due to increasing downward emission of infrared radiation by the aerosol, but there is also a contribution from the stratospheric warming the aerosol causes. Our results suggest climate model simulations of solar dimming can capture the main features of the global-mean precipitation response to stratospheric aerosol geoengineering.
引用
收藏
页数:10
相关论文
共 12 条
  • [1] Influence of stratospheric aerosol geoengineering on temperature mean and precipitation extremes indices in Africa
    Obahoundje, Salomon
    N'guessan, Vami Hermann
    Diedhiou, Arona
    Kravitz, Ben
    Moore, John C.
    [J]. INTERNATIONAL JOURNAL OF CLIMATE CHANGE STRATEGIES AND MANAGEMENT, 2022, 14 (04) : 399 - 423
  • [2] Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering
    Ji, Duoying
    Fang, Songsong
    Curry, Charles L.
    Kashimura, Hiroki
    Watanabe, Shingo
    Cole, Jason N. S.
    Lenton, Andrew
    Muri, Helene
    Kravitz, Ben
    Moore, John C.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (14) : 10133 - 10156
  • [3] Implication of stratospheric aerosol geoengineering on compound precipitation and temperature extremes in Africa
    Obahoundje, Salomon
    Nguessan-Bi, Vami Herman
    Diedhiou, Arona
    Kravitz, Ben
    Moore, John C.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 863
  • [4] Impact of Stratospheric Aerosol Geoengineering on Extreme Precipitation and Temperature Indices in West Africa Using GLENS Simulations
    Alamou, E. A.
    Zandagba, J. E.
    Biao, E. I.
    Obada, E.
    Da-Allada, C. Y.
    Bonou, F. K.
    Pomalegni, Y.
    Baloitcha, E.
    Tilmes, S.
    Irvine, P. J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2022, 127 (09)
  • [5] Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
    Tilmes, Simone
    MacMartin, Douglas G.
    Lenaerts, Jan T. M.
    van Kampenhout, Leo
    Muntjewerf, Laura
    Xia, Lili
    Harrison, Cheryl S.
    Krumhardt, Kristen M.
    Mills, Michael J.
    Kravitz, Ben
    Robock, Alan
    [J]. EARTH SYSTEM DYNAMICS, 2020, 11 (03) : 579 - 601
  • [6] Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature
    Monerie, Paul-Arthur
    Moine, Marie-Pierre
    Terray, Laurent
    Valcke, Sophie
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (05):
  • [7] Global-Mean Temperature Change from Shipping toward 2050: Improved Representation of the Indirect Aerosol Effect in Simple Climate Models
    Lund, Marianne Tronstad
    Eyring, Veronika
    Fuglestvedt, Jan
    Hendricks, Johannes
    Lauer, Axel
    Lee, David
    Righi, Mattia
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (16) : 8868 - 8877
  • [8] Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation
    Nishina, K.
    Ito, A.
    Beerling, D. J.
    Cadule, P.
    Ciais, P.
    Clark, D. B.
    Falloon, P.
    Friend, A. D.
    Kahana, R.
    Kato, E.
    Keribin, R.
    Lucht, W.
    Lomas, M.
    Rademacher, T. T.
    Pavlick, R.
    Schaphoff, S.
    Vuichard, N.
    Warszawaski, L.
    Yokohata, T.
    [J]. EARTH SYSTEM DYNAMICS, 2014, 5 (01) : 197 - 209
  • [9] A method for merging nadir-sounding climate records, with an application to the global-mean stratospheric temperature data sets from SSU and AMSU
    McLandress, C.
    Shepherd, T. G.
    Jonsson, A. I.
    von Clarmann, T.
    Funke, B.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (16) : 9271 - 9284
  • [10] Why Does Aerosol Forcing Control Historical Global-Mean Surface Temperature Change in CMIP5 Models?
    Rotstayn, Leon D.
    Collier, Mark A.
    Shindell, Drew T.
    Boucher, Olivier
    [J]. JOURNAL OF CLIMATE, 2015, 28 (17) : 6608 - 6625