ANALYTICAL METHODS FOR NON-LINEAR FRACTIONAL KOLMOGOROV-PETROVSKII-PISKUNOV EQUATION Soliton Solution and Operator Solution

被引:0
|
作者
Xu, Bo [1 ,2 ]
Zhang, Yufeng [1 ]
Zhang, Sheng [3 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou, Jiangsu, Peoples R China
[2] Bohai Univ, Sch Educ Sci, Jinzhou, Peoples R China
[3] Bohai Univ, Sch Math & Phys, Jinzhou, Peoples R China
来源
THERMAL SCIENCE | 2021年 / 25卷 / 03期
关键词
fractional derivative; analytical method; exact solution; fractional Kolmogorov-Petrovskii-Piskunov equation; operator solution; kink-soliton solution; DYNAMICS;
D O I
10.2298/TSCI191123102X
中图分类号
O414.1 [热力学];
学科分类号
摘要
Kolmogorov-Petrovskii-Piskunov equation can be regarded as a generalized form of the Fitzhugh-Nagumo, Fisher and Huxley equations which have many applications in physics, chemistry and biology. In this paper, two fractional extended versions of the non-linear Kolmogorov-Petrovskii-Piskunov equation are solved by analytical methods. Firstly, a new and more general fractional derivative is defined and some properties of it are given. Secondly, a solution in the form of operator representation of the non-linear Kolmogorov-Petrovskii-Piskunov equation with the defined fractional derivative is obtained. Finally, some exact solutions including kink-soliton solution and other solutions of the non-linear Kolmogorov-Petrovskii-Piskunov equation with Khalil et al.'s fractional derivative and variable coefficients are obtained. It is shown that the fractional-order affects the propagation velocity of the obtained kink-soliton solution.
引用
收藏
页码:2161 / 2168
页数:8
相关论文
共 50 条
  • [1] An Approximate Solution of Fractional Kolmogorov-Petrovskii-Piskunov Equations
    Khan, Sumaira Yousuf
    Altaf, Sahar
    [J]. MATEMATIKA, 2019, 35 (03) : 377 - 385
  • [2] Study of traveling soliton and fronts phenomena in fractional Kolmogorov-Petrovskii-Piskunov equation
    Ullah, Ikram
    Shah, Kamal
    Abdeljawad, Thabet
    [J]. PHYSICA SCRIPTA, 2024, 99 (05)
  • [3] Travelling Wave Solution of the Kolmogorov-Petrovskii-Piskunov Equation by the First Integral Method
    Rouhparvar, H.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (01) : 181 - 190
  • [4] An Efficient Numerical Technique for the Nonlinear Fractional Kolmogorov-Petrovskii-Piskunov Equation
    Veeresha, Pundikala
    Prakasha, Doddabhadrappla Gowda
    Baleanu, Dumitru
    [J]. MATHEMATICS, 2019, 7 (03):
  • [5] Computational and numerical simulations for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov (FKPP) equation
    Khater, Mostafa M A
    Attia, Raghda A M
    Lu, Dianchen
    [J]. Physica Scripta, 2020, 95 (05):
  • [6] On the solution of boundary-value problems of Kolmogorov-Petrovskii-Piskunov type
    Suleimanov, B. I.
    [J]. MATHEMATICAL NOTES, 2008, 83 (3-4) : 564 - 572
  • [7] On the solution of boundary-value problems of Kolmogorov-Petrovskii-Piskunov type
    B. I. Suleimanov
    [J]. Mathematical Notes, 2008, 83 : 564 - 572
  • [8] Symmetry properties and exact solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation
    Hashemi, M. S.
    Inc, M.
    Bayram, M.
    [J]. REVISTA MEXICANA DE FISICA, 2019, 65 (05) : 529 - 535
  • [9] Computational and numerical simulations for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov (FKPP) equation
    Khater, Mostafa M. A.
    Attia, Raghda A. M.
    Lu, Dianchen
    [J]. PHYSICA SCRIPTA, 2020, 95 (05)
  • [10] Using (G′/G)-expansion method to seek the traveling wave solution of Kolmogorov-Petrovskii-Piskunov equation
    Feng, Jishe
    Li, Wanjun
    Wan, Qiaoling
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5860 - 5865