Automating Autoencoder Architecture Configuration: An Evolutionary Approach

被引:6
|
作者
Charte, Francisco [1 ]
Rivera, Antonio J. [1 ]
Martinez, Francisco [1 ]
del Jesus, Maria J. [1 ]
机构
[1] Univ Jaen, Andalusian Res Inst Data Sci & Computat Intellige, Comp Sci Dept, Campus Las Lagunillas S-N, Jaen 23071, Spain
关键词
Deep learning; Autoencoder; Optimization; Evolutionary;
D O I
10.1007/978-3-030-19591-5_35
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Learning from existing data allows building models able to classify patterns, infer association rules, predict future values in time series and much more. Choosing the right features is a vital step of the learning process, specially while dealing with high-dimensional spaces. Autoencoders (AEs) have shown ability to conduct manifold learning, compressing the original feature space without losing useful information. However, there is no optimal AE architecture for all datasets. In this paper we show how to use evolutionary approaches to automate AE architecture configuration. First, a coding to embed the AE configuration in a chromosome is proposed. Then, two evolutionary alternatives are compared against exhaustive search. The results show the great superiority of the evolutionary way.
引用
收藏
页码:339 / 349
页数:11
相关论文
共 50 条
  • [1] A survey on automating configuration and parameterization in evolutionary design exploration
    Eichhoff, Julian R.
    Roller, Dieter
    [J]. AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2015, 29 (04): : 333 - 350
  • [2] EvoAAA: An evolutionary methodology for automated neural autoencoder architecture search
    Charte, Francisco
    Rivera, Antonio J.
    Martinez, Francisco
    del Jesus, Maria J.
    [J]. INTEGRATED COMPUTER-AIDED ENGINEERING, 2020, 27 (03) : 211 - 231
  • [3] A Novel Approach to Automating Operating System Configuration Management
    Swiecicki, Blazej
    [J]. INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2015, PT II, 2016, 430 : 131 - 142
  • [4] An efficient evolutionary architecture search for variational autoencoder with alternating optimization and adaptive crossover
    Shang, Ronghua
    Liu, Hangcheng
    Li, Wenzheng
    Zhang, Weitong
    Ma, Teng
    Jiao, Licheng
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [5] Evolutionary algorithm based configuration interaction approach
    Chakraborty, Rahul
    Ghosh, Paulami
    Ghosh, Debashree
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2018, 118 (06)
  • [6] A framework for automating the configuration of OpenCL
    Rosa Gomes, Raphael de Souza
    Figueiredo, Josiel Maimone
    Martins, Claudia Aparecida
    de Oliveira, Allan Goncalves
    Nogueira, Jose de Souza
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 53 : 81 - 86
  • [7] Aiding Interactive Configuration and Planning: A Constraint and Evolutionary Approach
    Pitiot, Paul
    Aldanondo, Michel
    Vareilles, Elise
    Gaborit, Paul
    Djefel, Meriem
    Baron, Claude
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, 2010, 339 : 238 - +
  • [8] An evolutionary fuzzy modeling approach for ANFIS architecture
    Rastegar, F
    Araabi, BN
    Lucas, C
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2182 - 2189
  • [9] eVAE: Evolutionary Variational Autoencoder
    Wu, Zhangkai
    Cao, Longbing
    Qi, Lei
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 12
  • [10] Automating evolutionary art in the style of Mondrian
    Garza, AGD
    Lores, AZ
    [J]. GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 394 - 395