A fundamental polyhedron for the figure-eight knot group

被引:1
|
作者
Oichi, M [1 ]
机构
[1] Shizuoka Univ, Grad Sch Sci & Engn, Shizuoka 4228529, Japan
关键词
fundamental polyhedron; figure-eight knot group; Poincare's polyhedron theorem;
D O I
10.1016/j.topol.2002.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We will construct a new fundamental polyhedron for the figure-eight knot group by using the generators introduced in Sato [I. Kra, B. Maskit (Eds.), The First Ahlfors-Bers Colloquium, in: Contemp. Math., 2000, p. 271] related to Jorgensen groups. (C) 2004 Published by Elsevier B.V.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 50 条
  • [1] The fundamental group of the double of the figure-eight knot exterior is GFERF
    Long, DD
    Reid, AW
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 391 - 396
  • [2] Constructing thin subgroups commensurable with the figure-eight knot group
    Ballas, Samuel
    Long, Darren D.
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (05): : 3011 - 3024
  • [3] Complex hyperbolic geometry of the figure-eight knot
    Deraux, Martin
    Falbel, Elisha
    [J]. GEOMETRY & TOPOLOGY, 2015, 19 (01) : 237 - 293
  • [4] RECTANGULAR SUPERPOLYNOMIALS FOR THE FIGURE-EIGHT KNOT 41
    Kononov, Ya. A.
    Morozov, A. Yu.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 193 (02) : 1630 - 1646
  • [5] Khovanov homology detects the figure-eight knot
    Baldwin, John A.
    Dowlin, Nathan
    Levine, Adam Simon
    Lidman, Tye
    Sazdanovic, Radmila
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 871 - 876
  • [6] Geodesic knots in the figure-eight knot complement
    Miller, SM
    [J]. EXPERIMENTAL MATHEMATICS, 2001, 10 (03) : 419 - 436
  • [7] THE COMPLEMENT OF THE FIGURE-EIGHT KNOT GEOMETRICALLY BOUNDS
    Slavich, Leone
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (03) : 1275 - 1285
  • [8] Rectangular superpolynomials for the figure-eight knot 41
    Ya. A. Kononov
    A. Yu. Morozov
    [J]. Theoretical and Mathematical Physics, 2017, 193 : 1630 - 1646
  • [9] The colored Jones polynomial of a cable of the figure-eight knot
    Murakami, Hitoshi
    Tran, Anh T.
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023,
  • [10] ANOSOV FLOWS ON DEHN SURGERIES ON THE FIGURE-EIGHT KNOT
    Yu, Bin
    [J]. DUKE MATHEMATICAL JOURNAL, 2023, 172 (11) : 2195 - 2240