Global Validation of a Process-Based Model on Vegetation Gross Primary Production Using Eddy Covariance Observations

被引:7
|
作者
Liu, Dan [1 ]
Cai, Wenwen [1 ]
Xia, Jiangzhou [1 ]
Dong, Wenjie [1 ]
Zhou, Guangsheng [2 ,3 ]
Chen, Yang [1 ]
Zhang, Haicheng [1 ]
Yuan, Wenping [1 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China
[3] Chinese Acad Meteorol Sci, Beijing, Peoples R China
来源
PLOS ONE | 2014年 / 9卷 / 11期
基金
美国国家科学基金会; 中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
NET ECOSYSTEM EXCHANGE; PARAMETER-ESTIMATION; TERRESTRIAL GROSS; SEASONAL DROUGHT; CARBON-DIOXIDE; WATER; FOREST; PHOTOSYNTHESIS; UNCERTAINTY; PATTERNS;
D O I
10.1371/journal.pone.0110407
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gross Primary Production (GPP) is the largest flux in the global carbon cycle. However, large uncertainties in current global estimations persist. In this study, we examined the performance of a process-based model (Integrated BIosphere Simulator, IBIS) at 62 eddy covariance sites around the world. Our results indicated that the IBIS model explained 60% of the observed variation in daily GPP at all validation sites. Comparison with a satellite-based vegetation model (Eddy Covariance-Light Use Efficiency, EC-LUE) revealed that the IBIS simulations yielded comparable GPP results as the EC-LUE model. Global mean GPP estimated by the IBIS model was 107.50 +/- 1.37 Pg C year (-1) (mean value +/- standard deviation) across the vegetated area for the period 2000-2006, consistent with the results of the EC-LUE model (109.39 +/- 1.48 Pg C year (-1)). To evaluate the uncertainty introduced by the parameter V-cmax, which represents the maximum photosynthetic capacity, we inversed V-cmax using Markov Chain-Monte Carlo (MCMC) procedures. Using the inversed V-cmax values, the simulated global GPP increased by 16.5 Pg C year (-1), indicating that IBIS model is sensitive to V-cmax, and large uncertainty exists in model parameterization.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Estimating Forest Gross Primary Production Using Machine Learning, Light Use Efficiency Model, and Global Eddy Covariance Data
    Tian, Zhenkun
    Fu, Yingying
    Zhou, Tao
    Yi, Chuixiang
    Kutter, Eric
    Zhang, Qin
    Krakauer, Nir Y.
    [J]. FORESTS, 2024, 15 (09):
  • [2] Evapotranspiration and gross primary productivity of secondary vegetation in Amazonia inferred by eddy covariance
    Silva von Randow, Rita de Cassia
    Tomasella, Javier
    von Randow, Celso
    de Araujo, Alessandro Carioca
    Manzi, Antonio Ocimar
    Hutjes, Ronald
    Kruijt, Bart
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2020, 294
  • [3] Using digital camera and Landsat imagery with eddy covariance data to model gross primary production in restored wetlands
    Knox, Sara Helen
    Dronova, Iryna
    Sturtevant, Cove
    Oikawa, Patricia Y.
    Matthes, Jaclyn Hatala
    Verfaillie, Joseph
    Baldocchi, Dennis
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2017, 237 : 233 - 245
  • [4] Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model
    Jung, M.
    Reichstein, M.
    Bondeau, A.
    [J]. BIOGEOSCIENCES, 2009, 6 (10) : 2001 - 2013
  • [5] Estimating Gross Primary Production of a Forest Plantation Area Using Eddy Covariance Data and Satellite Imagery
    Joyson Ahongshangbam
    N. R. Patel
    S. P. S. Kushwaha
    Taibanganba Watham
    V. K. Dadhwal
    [J]. Journal of the Indian Society of Remote Sensing, 2016, 44 : 895 - 904
  • [6] Estimating Gross Primary Production of a Forest Plantation Area Using Eddy Covariance Data and Satellite Imagery
    Ahongshangbam, Joyson
    Patel, N. R.
    Kushwaha, S. P. S.
    Watham, Taibanganba
    Dadhwal, V. K.
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2016, 44 (06) : 895 - 904
  • [7] Evaluating Parameter Adjustment in the MODIS Gross Primary Production Algorithm Based on Eddy Covariance Tower Measurements
    Chen, Jing
    Zhang, Huifang
    Liu, Zirui
    Che, Mingliang
    Chen, Baozhang
    [J]. REMOTE SENSING, 2014, 6 (04) : 3321 - 3348
  • [8] A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model
    Li, F.
    Zeng, X. D.
    Levis, S.
    [J]. BIOGEOSCIENCES, 2012, 9 (07) : 2761 - 2780
  • [9] Evaluation of MODIS gross primary productivity for Africa using eddy covariance data
    Sjostrom, M.
    Zhao, M.
    Archibald, S.
    Arneth, A.
    Cappelaere, B.
    Falk, U.
    de Grandcourt, A.
    Hanan, N.
    Kergoat, L.
    Kutsch, W.
    Merbold, L.
    Mougin, E.
    Nickless, A.
    Nouvellon, Y.
    Scholes, R. J.
    Veenendaal, E. M.
    Ardo, J.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2013, 131 : 275 - 286
  • [10] Parameterizing Vegetation Traits With a Process-Based Ecohydrological Model and Xylem Water Isotopic Observations
    Li, K.
    Kuppel, S.
    Knighton, J.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2023, 15 (01)