LAND COVER CLASSIFICATION OF AN AREA SUSCEPTIBLE TO LANDSLIDES USING RANDOM FOREST AND NDVI TIME SERIES DATA

被引:3
|
作者
Tardelli Uehara, Tatiana Dias [1 ]
Soares, Anderson Reis [1 ]
Quevedo, Renata Pacheco [1 ]
Korting, Thales Sehn [1 ]
Garcia Fonseca, Leila Maria [1 ]
Adami, Marcos [1 ]
机构
[1] Brazils Natl Inst Space Res INPE, Gen Coordinat Earth Observat OBT, Av Astronautas 1758, Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
landslide; time series; Random Forest; land cover; disasters;
D O I
10.1109/IGARSS39084.2020.9324108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Landslides are a natural, gravity driven phenomena which can cause great economic and human losses. To prevent them, Land Use and Land Cover (LULC) maps are essential to identify areas of high susceptibility and to detect landslide scars. This paper presents results of a classification of a landslide susceptible area, using Random Forest algorithm and time series. The time series dataset is composed by the Normalized Difference Vegetation Index (NDVI) values and 16 metrics derived from the time series. The best performance was achieved using 14 metrics plus the NDVI values, with overall accuracy of 93.23% and kappa equals to 0.8937. The metrics revealed a great capability for landslides detection.
引用
收藏
页码:1345 / 1348
页数:4
相关论文
共 50 条
  • [1] Forest cover classification using Landsat ETM plus data and time series MODIS NDVI data
    Jia, Kun
    Liang, Shunlin
    Zhang, Lei
    Wei, Xiangqin
    Yao, Yunjun
    Xie, Xianhong
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 33 : 32 - 38
  • [2] Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: a case study of central Shandong
    Jin, Yuhao
    Liu, Xiaoping
    Chen, Yimin
    Liang, Xun
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (23) : 8703 - 8723
  • [3] Land Cover Classification in Heihe River Basin with Time series MODIS NDVI Data
    Gu, Juan
    Li, Xin
    Huang, Chunlin
    [J]. FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 477 - 481
  • [4] Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series
    Amini, Saeid
    Saber, Mohsen
    Rabiei-Dastjerdi, Hamidreza
    Homayouni, Saeid
    [J]. REMOTE SENSING, 2022, 14 (11)
  • [5] Land cover classification using ICESat-2 data with random forest
    Li, Binbin
    Xie, Huan
    Tong, Xiaohua
    Ye, Dan
    Sun, Kaipeng
    Li, Ming
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49 (11):
  • [6] Analysis of Land Use and Land Cover Change Using Time-Series Data and Random Forest in North Korea
    Piao, Yong
    Jeong, Seunggyu
    Park, Sangjin
    Lee, Dongkun
    [J]. REMOTE SENSING, 2021, 13 (17)
  • [7] Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data
    Jia, Kun
    Liang, Shunlin
    Wei, Xiangqin
    Yao, Yunjun
    Su, Yingru
    Jiang, Bo
    Wang, Xiaoxia
    [J]. REMOTE SENSING, 2014, 6 (11): : 11518 - 11532
  • [8] Multisource Earth Observation Data for Land-Cover Classification Using Random Forest
    Xu, Zhigang
    Chen, Jike
    Xia, Junshi
    Du, Peijun
    Zheng, Hongrui
    Gan, Le
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) : 789 - 793
  • [9] USING RANDOM FOREST TO INTEGRATE LIDAR DATA AND HYPERSPECTRAL IMAGERY FOR LAND COVER CLASSIFICATION
    Huang, Rui
    Zhu, Jiangtao
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3978 - 3981
  • [10] Land Cover Classification Based on Fused Data from GF-1 and MODIS NDVI Time Series
    Kong, Fanjie
    Li, Xiaobing
    Wang, Hong
    Xie, Dengfeng
    Li, Xiang
    Bai, Yunxiao
    [J]. REMOTE SENSING, 2016, 8 (09):