CONTINUITY IN SEPARABLE METRIZABLE AND LINDELOF SPACES

被引:0
|
作者
Good, Chris [1 ]
Greenwood, Sina [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Auckland, Auckland 1, New Zealand
关键词
Abstract dynamical system; topological dynamical system; Lindelof; separable metric; hereditarily Lindelof;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a map T: X -> X on a set X we examine under what conditions there is a separable metrizable or an hereditarily Lindelof or a Lindelof topology on X with respect to which T is a continuous map. For separable metrizable and hereditarily Lindelof, it turns out that there is such a topology precisely when the cardinality of X is no greater than c, the cardinality of the continuum. We go on to prove that there is a Lindelof topology on X with respect to which T is continuous if either T(c+) (X) = T(c+) + 1 (X) not equal theta or T(alpha)(X) = theta for some alpha < c(+), where T(alpha+1)(X) = T(T(alpha)(X)) and T(lambda)(X)= boolean AND(alpha<lambda) T(alpha)(X) for any ordinal alpha and limit ordinal lambda.
引用
收藏
页码:577 / 591
页数:15
相关论文
共 50 条