RIblast: an ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach

被引:69
|
作者
Fukunaga, Tsukasa [1 ,2 ]
Hamada, Michiaki [1 ,3 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Tokyo 1698555, Japan
[2] Japan Soc Promot Sci, Tokyo 1020083, Japan
[3] Waseda Univ, AIST, Computat Bio Big Data Open Innovat Lab, Tokyo 1698555, Japan
基金
日本学术振兴会;
关键词
LONG NONCODING RNAS; TARGET PREDICTION; IN-VIVO; ACCESSIBILITY; EVOLUTION; GENOMICS; PROBABILITIES; CONSTRAINTS; ANNOTATION; PRINCIPLES;
D O I
10.1093/bioinformatics/btx287
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: LncRNAs play important roles in various biological processes. Although more than 58 000 human lncRNA genes have been discovered, most known lncRNAs are still poorly characterized. One approach to understanding the functions of lncRNAs is the detection of the interacting RNA target of each lncRNA. Because experimental detections of comprehensive lncRNA-RNA interactions are difficult, computational prediction of lncRNA-RNA interactions is an indispensable technique. However, the high computational costs of existing RNA-RNA interaction prediction tools prevent their application to large-scale lncRNA datasets. Results: Here, we present 'RIblast', an ultrafast RNA-RNA interaction prediction method based on the seed-and-extension approach. RIblast discovers seed regions using suffix arrays and subsequently extends seed regions based on an RNA secondary structure energy model. Computational experiments indicate that RIblast achieves a level of prediction accuracy similar to those of existing programs, but at speeds over 64 times faster than existing programs.
引用
收藏
页码:2666 / 2674
页数:9
相关论文
共 50 条
  • [1] A grammatical approach to RNA-RNA interaction prediction
    Kato, Yuki
    Akutsu, Tatsuya
    Seki, Hiroyuki
    PATTERN RECOGNITION, 2009, 42 (04) : 531 - 538
  • [2] A heuristic approach to RNA-RNA interaction prediction
    Montaseri, Soheila
    Moghadam-Charkari, Nasrollah
    Zare-Mirakabad, Fatemeh
    JOURNAL OF THEORETICAL BIOLOGY, 2012, 300 : 206 - 211
  • [3] A grammatical approach to RNA-RNA interaction prediction
    Kato, Yuki
    Akutsu, Tatsuya
    Sew, Hiroyuki
    COMPUTATIONAL MODELS FOR LIFE SCIENCES (CMLS 07), 2007, 952 : 197 - +
  • [4] Fast prediction of RNA-RNA interaction
    Salari, Raheleh
    Backofen, Rolf
    Sahinalp, S. Cenk
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2010, 5
  • [5] Fast prediction of RNA-RNA interaction
    Raheleh Salari
    Rolf Backofen
    S Cenk Sahinalp
    Algorithms for Molecular Biology, 5
  • [6] Fast Prediction of RNA-RNA Interaction
    Salari, Raheleh
    Backofen, Rolf
    Sahinalp, S. Cenk
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2009, 5724 : 261 - +
  • [7] RNA-RNA interaction prediction based on multiple sequence alignments
    Li, Andrew X.
    Marz, Manja
    Qin, Jing
    Reidys, Christian M.
    BIOINFORMATICS, 2011, 27 (04) : 456 - 463
  • [8] RNA-RNA interaction prediction and antisense RNA target search
    Alkan, C
    Karakoç, E
    Nadeau, JH
    Sahinalp, SC
    Zhang, KZ
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2005, 3500 : 152 - 171
  • [9] RNA-RNA interaction prediction and antisense RNA target search
    Alkan, C
    Karakoç, E
    Nadeau, JH
    Sahinalp, SC
    Zhang, KH
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (02) : 267 - 282
  • [10] RNA-RNA interaction prediction using genetic algorithm
    Soheila Montaseri
    Fatemeh Zare-Mirakabad
    Nasrollah Moghadam-Charkari
    Algorithms for Molecular Biology, 9