Batch to Real-Time: Incremental Data Collection & Analytics Platform

被引:0
|
作者
Aydin, Ahmet Arif [1 ]
Anderson, Kenneth M. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
关键词
SOFTWARE ARCHITECTURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Real-time data collection and analytics is a desirable but challenging feature to provide in data-intensive software systems. To provide highly concurrent and efficient real-time analytics on streaming data at interactive speeds requires a well-designed software architecture that makes use of a carefully selected set of software frameworks. In this paper, we report on the design and implementation of the Incremental Data Collection & Analytics Platform (IDCAP). The IDCAP provides incremental data collection and indexing in real-time of social media data; support for real-time analytics at interactive speeds; highly concurrent batch data processing supported by a novel data model; and a front-end web client that allows an analyst to manage IDCAP resources, to monitor incoming data in real-time, and to provide an interface that allows incremental queries to be performed on top of large Twitter datasets.
引用
收藏
页码:5911 / 5920
页数:10
相关论文
共 50 条
  • [1] Real-Time Cyber Analytics Data Collection Framework
    Maosa, Herbert
    Ouazzane, Karim
    Sowinski-Mydlarz, Viktor
    [J]. INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01)
  • [2] An incremental approach for real-time Big Data visual analytics
    Garcia, Ignacio
    Casado, Ruben
    Bouchachia, Abdelhamid
    [J]. 2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), 2016, : 177 - 182
  • [3] A Serverless Real-Time Data Analytics Platform for Edge Computing
    Nastic, Stefan
    Rausch, Thomas
    Scekic, Ognjen
    Dustdar, Schahram
    Gusev, Marjan
    Koteska, Bojana
    Kostoska, Magdalena
    Jakimovski, Boro
    Ristov, Sasko
    Prodan, Radu
    [J]. IEEE INTERNET COMPUTING, 2017, 21 (04) : 64 - 71
  • [4] RAPID: Real-time Analytics Platform for Interactive Data Mining
    Lim, Kwan Hui
    Jayasekara, Sachini
    Karunasekera, Shanika
    Harwood, Aaron
    Falzon, Lucia
    Dunn, John
    Burgess, Glenn
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT III, 2019, 11053 : 649 - 653
  • [5] Real-time Data Dissemination and Analytics Platform for Challenging IoT Environments
    Daneels, Glenn
    Municio, Esteban
    Spaey, Kathleen
    Vandewiele, Gilles
    Dejonghe, Alexander
    Ongenae, Femke
    Latre, Steven
    Famaey, Jeroen
    [J]. 2017 GLOBAL INFORMATION INFRASTRUCTURE AND NETWORKING SYMPOSIUM (GIIS), 2017, : 23 - 30
  • [6] A mobile application to support collection and analytics of real-time critical care data
    Vankipuram, Akshay
    Vankipuram, Mithra
    Ghaemmaghami, Vafa
    Patel, Vimla L.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 151 : 45 - 55
  • [7] GPGPU for Real-Time Data Analytics
    He, Bingsheng
    Huynh Phung Huynh
    Mong, Rick Goh Siow
    [J]. PROCEEDINGS OF THE 2012 IEEE 18TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2012), 2012, : 945 - +
  • [8] HBelt: Integrating an Incremental ETL Pipeline with a Big Data Store for Real-Time Analytics
    Qu, Weiping
    Shankar, Sahana
    Ganza, Sandy
    Dessloch, Stefan
    [J]. ADVANCES IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2015, 2015, 9282 : 123 - 137
  • [9] A Scalable Platform for Low-Latency Real-Time Analytics of Streaming Data
    Cappellari, Paolo
    Roantree, Mark
    Chun, Soon Ae
    [J]. DATA MANAGEMENT TECHNOLOGIES AND APPLICATIONS, 2017, 737 : 1 - 24
  • [10] Platform for Automated Real-Time High Performance Analytics on Medical Image Data
    Allen, William J.
    Gabr, Refaat E.
    Tefera, Getaneh B.
    Pednekar, Amol S.
    Vaughn, Matthew W.
    Narayana, Ponnada A.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (02) : 318 - 324