A NEKHOROSHEV TYPE THEOREM FOR THE NONLINEAR KLEIN-GORDON EQUATION WITH POTENTIAL

被引:2
|
作者
Pasquali, Stefano [1 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
来源
关键词
Nekhoroshev theorem; nonlinear Klein-Gordon equation; Hamiltonian systems; normal forms; long time behaviour; BIRKHOFF NORMAL-FORM; LONG-TIME EXISTENCE; GLOBAL EXISTENCE; STABILITY; PERTURBATIONS;
D O I
10.3934/dcdsb.2017215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the one-dimensional nonlinear Klein-Gordon (NLKG) equation with a convolution potential, and we prove that solutions with small analytic norm remain small for exponentially long times. The result is uniform with respect to c >= 1, which however has to belong to a set of large measure.
引用
收藏
页码:3573 / 3594
页数:22
相关论文
共 50 条
  • [1] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    [J]. AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [2] Nonlinear Klein-Gordon equation
    [J]. Appl Math Lett, 3 (09):
  • [3] Nonlinear Klein-Gordon equation
    Adomian, G
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 9 - 10
  • [4] LEVINSON THEOREM FOR THE KLEIN-GORDON EQUATION
    LIANG, YG
    MA, ZQ
    [J]. PHYSICAL REVIEW D, 1986, 34 (02): : 565 - 570
  • [5] NONLINEAR KLEIN-GORDON EQUATION ON SCHWARZSCHILD TYPE METRIC
    BACHELOT, A
    NICOLAS, JP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (10): : 1047 - 1050
  • [6] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    [J]. SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [7] Solitons for the Nonlinear Klein-Gordon Equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Micheletti, A. M.
    [J]. ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 481 - 499
  • [8] REMARKS ON A NONLINEAR KLEIN-GORDON EQUATION
    GARUE, S
    MONTALDI, E
    [J]. LETTERE AL NUOVO CIMENTO, 1976, 17 (04): : 132 - 134
  • [9] Nonlinear Klein-Gordon equation pulsons with a fractional power potential
    Salimov, R. K.
    Ekomasov, E. G.
    [J]. LETTERS ON MATERIALS, 2016, 6 (01): : 43 - 45
  • [10] Multidimensional inverse scattering for the nonlinear Klein-Gordon equation with a potential
    Weder, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (01) : 62 - 77