Eco-environment Vulnerabiltiy Assessment Based on SOM-Ward ANN Clustering Methods

被引:0
|
作者
Qi, Wei [1 ]
Wang, Wei [1 ]
Chen, Nengcheng [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
关键词
eco-environment; vulnerabiltiy assessment; unsupervised artificial neural network; Self-organizaing map (SOM); Ward's clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposed a new unsupervised artificial neural network i.e. the SOM-Ward clustering method for conducting eco-environment vulnerabiltiy assessment. Through the clustering results on Fildes Peninsula we summarize the characteristics of the eco-environment vulnerability of the Antarctic ice-free areas and verify the practicability and reliability of the SOM-Ward model.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 10 条
  • [1] HAO Y, 2002, J ENV ENG, V20, P66
  • [2] He Y., 2009, AREAL RES DEV, V28, P108
  • [3] Headland RobertK., 1985, POLAR REC, V22, P475
  • [4] [靖娟利 Jing Juanli], 2003, [地质科技情报, Geological Science and Techology Information], V22, P95
  • [5] Lee SC, 2006, LECT NOTES ARTIF INT, V4203, P435
  • [6] Li L., 2009, REGIONAL ASSESSMENT
  • [7] Pang X.P., 2006, GEOMATICS SPATIAL IN, V29, P1
  • [8] [庞小平 PANG Xiaoping], 2008, [武汉大学学报. 信息科学版, Geomatics and Information Science of Wuhan University], V33, P1174
  • [9] Clustering of the self-organizing map
    Vesanto, J
    Alhoniemi, E
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 586 - 600
  • [10] Zhao H., 1994, J BEIJING NORMAL U N, V30, P529