On 3D and 1D mathematical modeling of physically nonlinear beams

被引:8
|
作者
Krysko, A., V [1 ]
Awrejcewicz, J. [2 ]
Zhigalov, M., V [3 ]
Bodyagina, K. S. [3 ]
Krysko, V. A. [3 ]
机构
[1] Saratov State Tech Univ, Sci & Educ Ctr, Dept Math & Modelling, Politehn Skaya 77, Saratov 410054, Russia
[2] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowskiego Str, PL-90924 Lodz, Poland
[3] Saratov State Tech Univ, Dept Math & Modelling, Politehn Skaya 77, Saratov 410054, Russia
基金
俄罗斯基础研究基金会;
关键词
Physical nonlinearity; 3D (1D) theory; Nonhomogeneous plates; Euler-Bernoulli model; Timoshenko model; Finite element method; Method of variable elasticity parameters; ELASTOPLASTIC TORSION; SHELLS; BEHAVIOR; BARS;
D O I
10.1016/j.ijnonlinmec.2021.103734
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, mathematical models of physically nonlinear beams (and plates) are constructed in a three-dimensional and one-dimensional formulation based on the kinematic models of Euler-Bernoulli and Timoshenko. The modeling includes achievements of the deformation theory of plasticity, the von Mises plasticity criterion and the method of variable parameters of the Birger theory of elasticity. The theory is built for arbitrary boundary conditions, transverse loads, and stress-strain diagrams. The issue of solving perforated structures is also addressed. The numerical investigations are based on the finite element method and the method of variable elasticity parameters. Convergence of the method is also investigated.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Mathematical modeling of physically nonlinear 3D beams and plates made of multimodulus materials
    Krysko, A., V
    Awrejcewicz, J.
    Bodyagina, K. S.
    Zhigalov, M., V
    Krysko, V. A.
    ACTA MECHANICA, 2021, 232 (09) : 3441 - 3469
  • [2] Mathematical modeling of physically nonlinear 3D beams and plates made of multimodulus materials
    A. V. Krysko
    J. Awrejcewicz
    K. S. Bodyagina
    M. V. Zhigalov
    V. A. Krysko
    Acta Mechanica, 2021, 232 : 3441 - 3469
  • [3] On 3D and 1D Weyl particles in a 1D box
    Salvatore De Vincenzo
    The European Physical Journal Plus, 135
  • [4] On 3D and 1D Weyl particles in a 1D box
    De Vincenzo, Salvatore
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (10):
  • [5] 1D and 3D Modeling of Modern Automotive Exhaust Manifold
    Mohamad, B.
    Zelentsov, A.
    JOURNAL OF THE SERBIAN SOCIETY FOR COMPUTATIONAL MECHANICS, 2019, 13 (01) : 80 - 91
  • [6] Modeling Seismic Wave Propagation and Amplification in 1D/2D/3D Linear and Nonlinear Unbounded Media
    Semblat, J. F.
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2011, 11 (06) : 440 - 448
  • [7] 3D Open Channel Flow Modeling by Applying 1D Adjustment
    Abedini, A. A.
    Ghiassi, R.
    Ardestani, M.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH, 2011, 5 (02) : 381 - 394
  • [8] 1D Model for the 3D Magnetohydrodynamics
    Dai, Mimi
    Vyas, Bhakti
    Zhang, Xiangxiong
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [9] 3D Instances as 1D Kernels
    Wu, Yizheng
    Shi, Min
    Du, Shuaiyuan
    Lu, Hao
    Cao, Zhiguo
    Zhong, Weicai
    COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 235 - 252
  • [10] 1D Model for the 3D Magnetohydrodynamics
    Mimi Dai
    Bhakti Vyas
    Xiangxiong Zhang
    Journal of Nonlinear Science, 2023, 33