Approximating multiobjective knapsack problems

被引:69
|
作者
Erlebach, T [1 ]
Kellerer, H
Pferschy, U
机构
[1] Swiss Fed Inst Technol, Comp Engn & Networks Lab, CH-8092 Zurich, Switzerland
[2] Graz Univ, Dept Stat & Operat Res, A-8010 Graz, Austria
关键词
knapsack problem; multiobjective optimization; approximation scheme;
D O I
10.1287/mnsc.48.12.1603.445
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
For multiobjective optimization problems, it is meaningful to compute a set of solutions covering all possible trade-offs between the different objectives. The multiobjective knapsack problem is a generalization of the classical knapsack problem in which each item has several profit values. For this problem, efficient algorithms for computing a provably good approximation to the set of all nondominated feasible solutions, the Pareto frontier, are studied. For the multiobjective one-dimensional knapsack problem, a practical fully polynomial time approximation scheme (FPTAS) is derived. It is based on a new approach to the single objective knapsack problem using a partition of the profit space into intervals of exponentially increasing length. For the multiobjective m-dimensional knapsack problem, the first known polynomial-time approximation scheme (PTAS), based on linear programming, is presented.
引用
收藏
页码:1603 / 1612
页数:10
相关论文
共 50 条
  • [1] Neuroevolution for solving multiobjective knapsack problems
    Denysiuk, Roman
    Gaspar-Cunha, Antonio
    Delbem, Alexandre C. B.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 65 - 77
  • [2] Approximating multi-objective knapsack problems
    Erlebach, T
    Kellerer, H
    Pferschy, U
    [J]. ALGORITHMS AND DATA STRUCTURES, 2001, 2125 : 210 - 221
  • [3] On Multiobjective Knapsack Problems with Multiple Decision Makers
    Song, Zhen
    Luo, Wenjian
    Lin, Xin
    She, Zeneng
    Zhang, Qingfu
    [J]. 2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 156 - 163
  • [4] A Novel Multiobjective Optimization Algorithm for 0/1 Multiobjective Knapsack Problems
    Chen, Min-Rong
    Weng, Jian
    Li, Xia
    [J]. ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 3, 2010, : 359 - +
  • [5] Approximating nondominated sets in continuous multiobjective optimization problems
    Martín, J
    Bielza, C
    Insua, DR
    [J]. NAVAL RESEARCH LOGISTICS, 2005, 52 (05) : 469 - 480
  • [6] Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems
    Kim, Yehoon
    Kim, Jong-Hwan
    Han, Kuk-Hyun
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2586 - 2591
  • [7] Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems
    [J]. Ishibuchi, H. (hisaoi@cs.osakafu-u.ac.jp), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior; Operador Nacional do Sistema Eletrico - ONS (IEEE Computer Society):
  • [8] Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems
    Ishibuchi, H
    Narukawa, K
    [J]. HIS 2005: 5TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, : 265 - 270
  • [9] MOEA/D with Uniform Design for Solving Multiobjective Knapsack Problems
    Tan, Yan-yan
    Jiao, Yong-chang
    [J]. JOURNAL OF COMPUTERS, 2013, 8 (02) : 302 - 307
  • [10] The Power of the Weighted Sum Scalarization for Approximating Multiobjective Optimization Problems
    Bazgan, Cristina
    Ruzika, Stefan
    Thielen, Clemens
    Vanderpooten, Daniel
    [J]. THEORY OF COMPUTING SYSTEMS, 2022, 66 (01) : 395 - 415