A Max-Min Ant System Approach to Autonomous Navigation

被引:0
|
作者
Luo, Chaomin [1 ]
Alarabi, Saleh [2 ]
Bi, Zhuming [3 ]
Jan, Gene Eu [4 ]
机构
[1] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[2] Univ Detroit Mercy, Dept Elect & Comp Engn, Detroit, MI 48221 USA
[3] Purdue Univ, Dept Civil & Mech Engn, Ft Wayne, IN USA
[4] Tainan Natl Univ Arts, Grad Inst Animat & Film Art, Tainan, Taiwan
关键词
Max-min ant system; multi-goal navigation; histogram-based local navigator; mapping; foraging-enabled trail; NEURAL-NETWORK;
D O I
10.1109/cec.2019.8790076
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-goal navigation of an autonomous mobile robot seeks to reach multiple goals with a planned shortest trajectory in some real-world applications such as search and rescue robots, agricultural harvesting robots, resource prospecting robots and service robots, etc. An improved max-min ant system (MMAS) approach is proposed in this paper for realtime concurrent multi-goal navigation and map building. A global trajectory is planned by the proposed MMAS approach, in which a foraging-enabled trail is generated to guide the robot to the multiple goals. A histogram -based local navigator is utilized to guide the robot to follow the trail planned by the global path planner, with obstacle avoidance. In this paper, simulation results demonstrate that the real-time mapping and multi-goal navigation of an autonomous robot is successfully carried out under unknown environments.
引用
收藏
页码:1982 / 1987
页数:6
相关论文
共 50 条
  • [1] MAX-MIN Ant System
    Stützle, T
    Hoos, HH
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2000, 16 (08): : 889 - 914
  • [2] A max-min ant system algorithm with εMAX selection
    Ogawa, Masato
    Li, Lei
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (04): : 467 - 471
  • [3] On MAX-MIN ant system's parameters
    Pellegrini, Paola
    Favaretto, Daniela
    Moretti, Elena
    [J]. ANT COLONY OPTIMIZATION AND SWARM INTELLIGENCE, PROCEEDINGS, 2006, 4150 : 203 - 214
  • [4] On the Explorative Behavior of MAX-MIN Ant System
    Favaretto, Daniela
    Moretti, Elena
    Pellegrini, Paola
    [J]. ENGINEERING STOCHASTIC LOCAL SEARCH ALGORITHMS: DESIGNING, IMPLEMENTING AND ANALYZING EFFECTIVE HEURISTICS, 2009, 5752 : 115 - 119
  • [5] MAX-MIN Ant System in Image Preprocessing
    Laptik, R.
    Navakauskas, D.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2009, (01) : 21 - 24
  • [6] A Max-Min Ant System Modeling Approach for Production Scheduling in a FMS
    Kato, E. R. R.
    Morandin, O., Jr.
    Fonseca, M. A. S.
    [J]. IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [7] Max-Min Ant System Approach for Solving Construction Site Layout
    Ning, Xin
    Liu, Wen Han
    [J]. MECHATRONICS AND MATERIALS PROCESSING I, PTS 1-3, 2011, 328-330 : 128 - +
  • [8] An Approach for Assembly Sequence Planning Based on Max-Min Ant System
    Diaz, M.
    Lombera, H.
    Martinez, E.
    Garza, R.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (04) : 907 - 912
  • [9] Protein structure calculation with a max-min ant system
    J Gimmler
    W Gronwald
    H Möller
    TE Exner
    [J]. Chemistry Central Journal, 3 (Suppl 1)
  • [10] Max-Min Ant System with Linear Memory Complexity
    Kovarik, Oleg
    Kordik, Pavel
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,